

Mine Sweeper

Building the Mine Sweeper

You can build the robot with all the parts from the NXT retail set. After the robot building
instructions, you’ll see how to prepare four mines of the correct size and color for your robot,

300 CHAPTER 7 ■ MINE SWEEPER

using the few retail set parts left. You might also want to prepare some other suitable object to
be collected, by using some black 2 4 bricks that you might have among your LEGO spares.
You can make a mine from two piled bricks. After completing the grabber subassembly (Step
70), you can test the arm mechanism by rotating the bevel gear by hand.

Figure 7-8. Mine Sweeper bill of materials

CHAPTER 7 ■ MINE SWEEPER 301

Table 7-2. Mine Sweeper Bill of Materials

Quantity Color Part Number Part Name

6 White 32524.DAT TECHNIC Beam 7

6 White 40490.DAT TECHNIC Beam 9

4 Dark gray 32009.DAT TECHNIC Beam 11.5 Liftarm Bent 45 Double

3 Black 3737.DAT TECHNIC Axle 10

3 55805.DAT Electric Cable NXT 35cm

2 55806.DAT Electric Cable NXT 50cm

6 White 32525.DAT TECHNIC Beam 11

4 White 41239.DAT TECHNIC Beam 13

3 White 32278.DAT TECHNIC Beam 15

3 53787.DAT Electric MINDSTORMS NXT Motor

1 53788.DAT Electric MINDSTORMS NXT

1 Light gray 32123.DAT TECHNIC Bush 1/2 Smooth

1 Light gray 3649.DAT TECHNIC Gear 40 Tooth

5 Dark gray 32316.DAT TECHNIC Beam 5

6 Dark gray 32526.DAT TECHNIC Beam 7 Bent 90 (5:3)

2 Light gray 54087.DAT Wheel 43.2 22 Without Pinholes

2 Dark gray 32348.DAT TECHNIC Beam 7 Liftarm Bent (4:4)

4 Light gray 44294.DAT TECHNIC Axle 7

1 White 55969.DAT Electric MINDSTORMS NXT Light Sensor

1 Black 3707.DAT TECHNIC Axle 8

2 Black 55976.DAT Tire 56 26 Balloon

1 White 53792.DAT Electric MINDSTORMS NXT Ultrasonic Sensor

2 Light gray X783.DAT TECHNIC Pin Long

4 Dark gray 41678.DAT TECHNIC Axle Joiner Perpendicular Double Split

8 Light gray 4519.DAT TECHNIC Axle 3

4 Black 32072.DAT TECHNIC Knob Wheel

8 Light gray 48989.DAT TECHNIC Axle Joiner Perpendicular 133 with
4 Pins

4 Black 32054.DAT TECHNIC Pin Long with Stop Bush

3 Black 32184.DAT TECHNIC Axle Joiner Perpendicular 3L

5 Dark gray 32523.DAT TECHNIC Beam 3

1 Black 32034.DAT TECHNIC Angle Connector #2

1 Black 3705.DAT TECHNIC Axle 4

7 Light gray 55615.DAT TECHNIC Beam 5 Bent 90 (3:3) with 4 Pins

6 Dark gray 32140.DAT TECHNIC Beam 5 Liftarm Bent 90 (4:2)

Continued

302 CHAPTER 7 ■ MINE SWEEPER

Table 7-2. Continued

Quantity Color Part Number Part Name

2 Black 2905.DAT TECHNIC Liftarm Triangle 5 3 0.5

1 Black X344.DAT TECHNIC Gear 36 Tooth Double Bevel

2 Light gray 32073.DAT TECHNIC Axle 5

9 Light gray 3713.DAT TECHNIC Bush

1 Light gray 3647.DAT TECHNIC Gear 8 Tooth

2 Black 32013.DAT TECHNIC Angle Connector #1

2 Black 32270.DAT TECHNIC Gear 12 Tooth Double Bevel

15 Blue 43093.DAT TECHNIC Axle Pin with Friction

5 Light gray 6536.DAT TECHNIC Axle Joiner Perpendicular

8 Black 32062.DAT TECHNIC Axle 2 Notched

47 Black 2780.DAT TECHNIC Pin with Friction and Slots

2 Black 32039.DAT TECHNIC Connector with Axlehole

6 Black 45590.DAT TECHNIC Axle Joiner Double Flexible

4 Black 75535.DAT TECHNIC Pin Joiner Round

6 Black 32014.DAT TECHNIC Angle Connector #6 (90 degree)

1 Light gray 32269.DAT TECHNIC Gear 20 Tooth Double Bevel

2 Light gray 4185.DAT TECHNIC Wedge Belt Wheel

29 Black 6558.DAT TECHNIC Pin Long with Friction and Slot

2 Dark gray 42003.DAT TECHNIC Axle Joiner Perpendicular with 2 Holes

266 parts total (all included in NXT retail set)

CHAPTER 7 ■ MINE SWEEPER 303

Start building the right wheel assembly. In Step 2, insert two black pins in the motor’s rear.

304 CHAPTER 7 ■ MINE SWEEPER

Attach the wheel, then turn the model and insert the bent beam in the wheel axle, securing it
with a bush. Finally, add an 11 holes-long beam.

CHAPTER 7 ■ MINE SWEEPER 305

Continue building the structure. In Step 14, place two 11 holes-long beams and a 13-long beam as
shown.

306 CHAPTER 7 ■ MINE SWEEPER

The right wheel assembly is done.

Now you are building the grabber motor’s assembly that forms the central part of the robot.

CHAPTER 7 ■ MINE SWEEPER 307

The bent wedge on top of the motor helps the mines to slide down into the robot’s hold, once the
grabber arm has collected, raised, and released them.

308 CHAPTER 7 ■ MINE SWEEPER

The building goes on by placing a 9-long beam and two pins. Then add the bent beams to hold
the white beam in place. Finally, add the 8-tooth gear.

CHAPTER 7 ■ MINE SWEEPER 309

Start building the grabber arm itself. In Step 29, place the blue axle pins in the 7-long beam as
shown. Then add the gears and the other white beam. Lock the structure with two black knob
wheels. They are used to trasmit movement at 90 degrees to the grabber fingers, as were gears
with just 4 teeth.

310 CHAPTER 7 ■ MINE SWEEPER

Start building the right finger subassembly.

CHAPTER 7 ■ MINE SWEEPER 311

The right finger subassembly is done.

312 CHAPTER 7 ■ MINE SWEEPER

Start building the left finger subassembly.

CHAPTER 7 ■ MINE SWEEPER 313

The left finger subassembly is done.

314 CHAPTER 7 ■ MINE SWEEPER

Attach the fingers to the grabber arm, so that they open and close symmetrically. Turn the model
and add a blocking beam. The grabber arm is done.

CHAPTER 7 ■ MINE SWEEPER 315

Insert the grabber arm into its place in the grabber motor assembly. Add a 9-long beam, a black
pin, and a long pin.

316 CHAPTER 7 ■ MINE SWEEPER

Add two bent beams, then the 20-tooth gear and the bush. Attach two black pins to the longer
bent liftarm. Add the 40-tooth gear, and the grabber assembly is finished. Now you can try the
underactuated mechanism, turning the bevel gear by hand.

CHAPTER 7 ■ MINE SWEEPER 317

Attach the grabber assembly to the right side of the robot.

318 CHAPTER 7 ■ MINE SWEEPER

Start building the left wheel assembly. In Step 73, insert two black pins in the motor’s rear.

CHAPTER 7 ■ MINE SWEEPER 319

Attach the wheel, then turn the model and insert the bent beam in the wheel axle, securing it
with a bush.

320 CHAPTER 7 ■ MINE SWEEPER

Add an 11 holes-long beam in Step 81.

CHAPTER 7 ■ MINE SWEEPER 321

In Step 84, place two 11 holes-long beams and a 13 holes-long beam as shown. The left wheel
assembly is done.

322 CHAPTER 7 ■ MINE SWEEPER

Attach the left wheel assembly to the rest of the robot.

CHAPTER 7 ■ MINE SWEEPER 323

Start building the frame that will be placed in the back of the robot to hold together the three
main parts you just built.

324 CHAPTER 7 ■ MINE SWEEPER

Continue building the frame as shown.

CHAPTER 7 ■ MINE SWEEPER 325

This frame also holds the rear passive wheel.

326 CHAPTER 7 ■ MINE SWEEPER

Attach the frame on the back of the robot. Step 108 is tricky, because you have to insert 14 pins in
their correct holes.

CHAPTER 7 ■ MINE SWEEPER 327

Here you can see how the back frame looks when attached.

328 CHAPTER 7 ■ MINE SWEEPER

Rotate the robot and insert a 9-long beam.

CHAPTER 7 ■ MINE SWEEPER 329

Start building the front scanner of the robot.

330 CHAPTER 7 ■ MINE SWEEPER

Add the Light Sensor and the Ultrasonic Sensor.

CHAPTER 7 ■ MINE SWEEPER 331

Complete the front scanner.

332 CHAPTER 7 ■ MINE SWEEPER

Here’s how the robot looks when the front scanner is attached.

CHAPTER 7 ■ MINE SWEEPER 333

Build the NXT holder frame.

334 CHAPTER 7 ■ MINE SWEEPER

The NXT frame will stand on the top of the robot.

CHAPTER 7 ■ MINE SWEEPER 335

Complete the NXT frame assembly.

336 CHAPTER 7 ■ MINE SWEEPER

Attach the NXT frame on the robot as shown.

CHAPTER 7 ■ MINE SWEEPER 337

Attach the left wheel motor to NXT output port A, the grabber motor to port B, and the right
wheel motor to port C. Use three 35cm (14 inch) cables. Pass these cables through the NXT
frame’s top beams as shown here and in the next figure.

338 CHAPTER 7 ■ MINE SWEEPER

Attach the Ultrasonic Sensor to NXT input port 4 using a 50cm (20 inch) cable.

CHAPTER 7 ■ MINE SWEEPER 339

Attach the Light Sensor (mine scanner) to NXT input port 1 using another 50cm (20 inch) cable.

340 CHAPTER 7 ■ MINE SWEEPER

The Mine Sweeper is completed.

CHAPTER 7 ■ MINE SWEEPER 341

Mines Building Instructions

In the NXT retail set there are no 2 4 black bricks, which are ideal to build the mines for our robot.
So, you’ll now see how to build four kinds of mines using the NXT set parts left. These mines are of
the right size and color, so that the Mine Sweeper will be able to detect and handle them.

Figure 7-9. Mines bill of materials

Table 7-3. Mines Bill of Materials

Quantity Color Part Number Part Name

6 Blue 43093.DAT TECHNIC Axle Pin with Friction

1 Black 3705.DAT TECHNIC Axle 4

1 Dark gray 32140.DAT TECHNIC Beam 5 Liftarm Bent 90 (4:2)

4 Dark gray 3701.DAT TECHNIC Brick 1 4 with Holes

2 Dark gray 41678.DAT TECHNIC Axle Joiner Perpendicular Double Split

2 Black 32136.DAT TECHNIC Pin 3L Double

2 Black 32184.DAT TECHNIC Axle Joiner Perpendicular 3L

7 Black 2780.DAT TECHNIC Pin with Friction and Slots

2 Black 32557.DAT TECHNIC Pin Joiner Dual Perpendicular

1 Black 4716.DAT TECHNIC Worm Screw

3 Black 32062.DAT TECHNIC Axle 2 Notched

2 Dark gray 32291.DAT TECHNIC Axle Joiner Perpendicular Double

37 parts total (all included in NXT retail set)

342 CHAPTER 7 ■ MINE SWEEPER

Here you are building both the first and second kind of mine.

CHAPTER 7 ■ MINE SWEEPER 343

Now you are building the third and fourth kind of mine. Notice that all these mines are made in
a color and shape such that the robot can detect and handle them.

344 CHAPTER 7 ■ MINE SWEEPER

Summary

Though it’s a wheeled robot, the Mine Sweeper is unique. Its peculiarity is the ability to detect,

grab, and store “mines” (two piled 2 4 black bricks are ideal) scattered around its working area.
This model has shown you an interesting hardware underactuated mechanism to accomplish
two different tasks with the same motor (grabbing and storing the objects into its capacious
hold). On the software side, you learned how to drive a wheeled robot with precision, when
needed to accomplish refined tasks—in this case, to align the robot with the mine.

The treaded robot you will see in the next chapter is really something else. JohnNXT is
a stunning robot, and you’ll have the opportunity to see why.

Exercise 7-1. Further Ideas

1. Improve the mine-centering algorithm by adding the mine width measurement. As a suggestion, use the

following code:

int FindMineWidth(short edge)

{
int x;
byte ev;
unsigned long time = CurrentTick();
// save start position
x = MotorRotationCount(LEFT_WHEEL);

Spin(sign(edge));

if (edge == LEFT)
{

// ignore the first edge found (the right one)
WaitEdge(APPROACHING);

}
// wait for edge, dismissing with timeout constraint
ev = WaitEdge(DISMISSING);
Off(WHEELS);
if (ev == EDGE_EV)
{

// if the edge was found, save position
x = MotorRotationCount(LEFT_WHEEL);

}
return x;

}

CHAPTER 7 ■ MINE SWEEPER 345

Also, change the CenterMine() subroutine accordingly, adding the code proposed after the first centering
procedure:

TextOut(0,LCD_LINE6," RIGHT EDGE ");

width = FindMineWidth(RIGHT);
TextOut(0,LCD_LINE6," LEFT EDGE ");
width = width - FindMineWidth(LEFT);
// and then center the mine
RotateMotorEx(WHEELS,80,width/2,-100,true,true);

2. It might happen that a mine is not detected even if it falls under the Light Sensor. If this unfortunate case
occurs, the mine could end up in the space between the Light Sensor of the protruding scanner and the
grabber fingers. Could you plan how to avoid this situation—both by using an additional sensor or thinking
about some software security procedure, as a periodic maneuver to free these trapped mines?

3. As is, the Mine Sweeper goes around quite randomly. After any mine collection, you should design a solution

to let it find its way again. For example, you can use a third-party digital compass sensor to keep the right
direction.

CHAPTER 8

JohnNXT Is Alive!

Here comes the top model of the book. By huge public demand, I’m proud to present JohnNXT!
For those who don’t know this robot yet, JohnNXT is an accurate desktop-scale–sized replica
of the famous robot Johnny 5 from the Short Circuit 1980s movies. This is a fairly complex
robot: you’ll need more parts than the ones included in the two NXT retail sets to build it.

Johnnicle: My LEGO Johnny 5 Chronicle

Johnny 5 is the robot star of the 1986 movie Short Circuit. The film became a cult classic,
along with its sequel Short Circuit 2, which followed in 1988. If you were a kid in the 80s or
90s (like me), you surely know those films. In Short Circuit, the robot called Number 5, one
of five prototypes built by Nova Robotics for military purposes, is struck by lightning while
being recharged and becomes alive, achieving self-consciousness, a sense of humor, and an
understanding of the value of life. At the end of the film, he renames himself Johnny 5. I think
Johnny 5 is one of the most engaging robots in film history.

Inspired by these movies, I’ve been trying to build a LEGO Johnny 5 (J5) replica since age 11.
I started with plain LEGO bricks. Then, I abandoned the project during my “dark age of LEGO”
(a period of time when real-life interests got the better of LEGO play). I came back to this project
when I first got my Robotics Invention System MINDSTORMS set, after I found on the Web the
amazing two-RCX robot called Cinque (meaning “five” in Italian), a J5 replica built by Mario Ferrari
in 2001. You can see this robot at http://www.marioferrari.org/cinque/cinque.html. I got inspired
both by the general concept of that robot and by the functions it featured. After four draft proto-
types, I got to the final shape of the RCX-based J5, which you can see in Figure 8-1.

347

348 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Figure 8-1. RCX-based version of LEGO Johnny 5

CHAPTER 8 ■ JOHNNXT IS ALIVE! 349

This LEGO model resembles the real J5, and already features all the functions that will

also be in the NXT version you’ll build: moving treads, rotating head, raising torso, and grab-
bing hands. To drive the six motors with just one RCX, I invented a motor multiplexer to allow
the RCX to pilot up to six motors with its three output ports. I also built a homebrew infrared
proximity detector in J5’s head to let him follow my hand. This detector was built with the kind
help of Philippe Hurbain, better known in the LEGO MINDSTORMS community as Philo.

The head is a bit over-dimensioned to feature the expressive poseable eyelids and neck.
However, the entire model was not designed with regard to the proportions and the body’s rel-
ative sizes. The head is too big, the base is too short, the shoulders are too large, the tread hubs
are too small, and so on. Nonetheless, it remains a good functional J5 replica. I knew myself
that I could do better.

The NXT system provided the perfect material to improve the project. As you can guess,
the NXT version inherits a lot from the RCX version. In the early design stage, I started study-
ing J5’s real dimensions and proportions from all the photos that I found on the Web. From the
many captured movie frames, I began to put a 2D CAD project together. I took the best meas-
urements that I could to reproduce the J5 structure. After finishing this CAD drawing, I went
on looking for the right LEGO elements to match the scaled-size J5 parts.

As a reference size to choose the scale for the whole robot, I used the dimensions of the
NXT Ultrasonic Sensor, which fits perfectly as a J5 head. Since MINDSTORMS NXT’s first
sightings on the Web, many people have noticed the resemblance between the shape of the
Ultrasonic Sensor and the J5 head, so they thought, “Johnny 5 is alive!” I surfed this popular
wave of thinking. In Figure 8-2, you can see an early stage of JohnNXT’s body development.

Figure 8-2. An early stage of JohnNXT’s body development

350 CHAPTER 8 ■ JOHNNXT IS ALIVE!

The Ultrasonic Sensor alone was not big enough to shape the head, so I added some LEGO
fairing panels. Other J5 parts that immediately followed in the size-matching process were the
treads’ hubs and passive wheel. The first complete JohnNXT (version 1) still had many defects,
mainly regarding the passive wheel and the upper body structure. In Figure 8-3, you can get
an idea of what JohnNXT version 1 looked like.

Figure 8-3. JohnNXT version 1, still missing some parts

The top tread hubs were made with large black turntables, which are in fact dimensionally
perfect when coupled with the 40-tooth gears used as ground hubs. The laser shape was primi-
tive, but already functional. It did not just rotate about a pivot—its movement was eccentric:

CHAPTER 8 ■ JOHNNXT IS ALIVE! 351

a combination of a rotation and a translation. This rough model was the starting point that
resulted in the making of the second version of JohnNXT, shown in Figure 8-4.

Figure 8-4. JohnNXT version 2, with one of the NXT microcomputers removed

352 CHAPTER 8 ■ JOHNNXT IS ALIVE!

The head shape was already the final one, with eyelids and positionable neck pistons. It
has not been modified further in successive versions. The fingertips were made with half-cut
rubber axle joiners (horror for the purists!) to get more grabbing friction. The main problems
raised in this version were the laser shape, the unreliable head-driving mechanism (a slippery
rubber band), and the shoulders’ shape. The worst problem was the fact that the treads’ chains
escaped from the largest hubs—the ones made with turntables.

For the third version (see Figure 8-5), the laser was completely redesigned. The lever
mechanisms allow it to lower and move toward the shoulder, or to lift and move away from it.
The tread hubs were made using 40-tooth gears, sacrificing the design a bit, but eliminating
the escaping chain problem. Also, the passive wheel was improved, making it as smooth as
possible, to avoid influencing the treads’ movements with its friction on the ground.

Figure 8-5. JohnNXT version 3, featuring new treads and laser. Notice the rubber bands added on
both elbows.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 353

A rubber band was added on both elbows to improve the underactuated two-DOF mech-
anism that allows the arms and hands to be driven by just one motor. As explained in Chapter 7,
with regard to how to get more functions from a single actuator, you need one movement to
be done before the other. Here, you need the arms to unfold before the hands open; the rub-
ber band comes into play to help you. In the Johnny RCX version (similar to the Mine Sweeper
grabber), the rubber band was not needed. This was because the forearm fell down under the
force of gravity, because the whole arm assemblies were roughly vertical. In JohnNXT, the
arms are inclined with respect to the ground, so I needed another force to make the forearms
move before the hands. You can read the discussion about underactuation back in Chapter 7.

The rubber band used as the transmission to drive the head was replaced with a more
reliable gear train. The head motor was built inside the upper body, while the arms’ motor is
on the side made invisible in the photo, shaping Johnny’s typical toolbox. I was still not satis-
fied with the shoulder shape and the upper body in general. The end result is the final version 4,
shown in Figure 8-6.

Figure 8-6. JohnNXT version 4, with new shoulder shape. The NXTs communicate using Bluetooth.
The final version you’ll build is identical, but uses the NXT high-speed serial ports to let the two
bricks communicate.

354 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Although many things might seem to appear the same as before, there are significant differ-
ences from the previous version. The shoulders are completely redesigned to look like a cylinder.
The parallelogram frame of the upper body, used to keep the shoulders and head vertical while
JohnNXT raises the torso, is now dimensionally more precise. The head tended to lean backward
when the torso was raised, while now the neck axis always remains vertical, whatever inclination
the upper body has. The arms’ motor now has a structural function in the upper body. The arms’
motor and head motor are swapped in position. Also, the head’s and arms’ geartrains are now
different, to fit in the new frame. Finally, the treads have been structurally improved and light-
ened, by using a triangular frame. Could this version be the last one? Could I stop with version 4?
Of course not.

The main reason is that this fourth version of JohnNXT has two NXTs that communicate
using Bluetooth. What’s wrong with it? Nothing, at first glance. But, wanting to control the
whole model remotely using Bluetooth (see Chapter 9), I needed to free the connection and so
had to plan a different manner of communication. So, I used the mysterious high-speed serial
communication implemented behind port 4 of the NXT. The external shape of JohnNXT
remains the same, while a new communication protocol had to be developed to use the serial
ports.

So, the final version of JohnNXT, the one you’ll build, is version number 5, where the ver-
sion change is primarily due to the software update. It seems this number was assigned by fate!
Our beloved JohnNXT can be controlled remotely via Bluetooth with a mobile phone, a PDA, or
the remote control shown in Chapter 9. This concludes the development chronicle for the robot
you’ll build in this chapter.

JohnNXT Features

Let me try to summarize all the JohnNXT features. From now on, I’ll refer to version 5, the final
one. This complex robot is a differential drive mobile robot, meaning that it has two independ-
ent treads to move around. You can vary its angular speed (rotational speed about its turning
center) by driving the treads at different speeds; to drive it straight, the treads must turn at the
same speed.

Sensors and Actuators

Check out the following features in Figure 8-7. Two NXT bricks are used to drive six motors.
The master NXT, placed in the abdomen, drives the two motors for the treads, as well as the
third motor, used to turn the head. The slave NXT, built in the base, controls the other three
motors. The fourth motor is used to raise the whole robot’s body, both the lower column and
the torso; the fifth motor is used to move the arms; and finally the sixth motor is used to arm
and disarm the laser.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 355

Light sensor

Head motor

Ultrasonic sensor

Microphone

Arms motor

Laser motor

Master NXT

Line tracking sensor

Treads motors

Slave NXT
Torso lifting motor

High speed serial
communication

Figure 8-7. Panoramic view of JohnNXT’s features

356 CHAPTER 8 ■ JOHNNXT IS ALIVE!

JohnNXT senses the world through a down-facing Light Sensor, the Ultrasonic Sensor in
the head, and a microphone. It also uses the master NXT buttons to get commands from you.
This equipment allows JohnNXT to follow a black line on the ground, to follow your hand, or
to react to sounds. He can grab and lift small objects, commanded by a sound-counting FSM.

The moving parts that have a limited moving range—such as the head, the arms, the
torso, and the laser (practically everything except the treads)—use the servomotors automagic
built-in limit switch technique (see Chapter 4 for details) to reset every part to its zero position
when the programs are started. The head’s motor feels when the neck has reached its leftmost
position, the arms’ motor feels when the arms are completely folded, the torso’s motor feels
the downmost torso limit, and the laser’s motor feels when the laser is completely raised or
lowered, all using the same method. Now, you should realize how powerful this technique is.
To do the same thing without servomotors, I would use many Touch Sensors, sometimes put-
ting them in awkward places. To manage the intermediate positions of these mechanisms—to
know by which angle a certain part must rotate to get into another state—I use decision
tables, as described in detail in Chapter 3.

JohnNXT’s Behavior and Menu

JohnNXT features a simple autonomous behavior, schematized in Figure 8-8. When nothing
interesting happens around him, he fools around, by performing some action and playing
sounds from his repertoire. If the environment becomes crowded and noisy (the Ultrasonic
Sensor sees something near and the microphone measures a loud continuous sound), John-
NXT becomes angry, and enters into attack mode: he aims his laser and remains there,
threatening, until everything gets calm again. If he sees someone getting near and the noise
level is reasonably low, he greets and then asks for input. It enters into the menu as soon as
you press the master NXT orange button.

From the menu, you have access to all JohnNXT functionalities: remote control, line fol-
lowing, hand following, arms’ sound control, and show off. In the Remote Controlled mode
(R/C), you can fully control JohnNXT with the remote device described in Chapter 9. In the
Line Following mode, you’re asked to calibrate the bottom Light Sensor on the light ground
and on the dark line, similar to the Turtle in Chapter 6, and then JohnNXT follows the line. In
the Hand Following mode, JohnNXT swings his head and moves toward your hand when he
sees it near. If the head is centered, he will move straight; if the head is turned on the side, he
will move steering on that side; and if the hand is too near, JohnNXT will back up. In the Arms
Control mode, you can control JohnNXT’s arms with repeated sound pulses. In the Show Off
mode, JohnNXT exhibits all his functionalities, synchronized with a looped soundtrack. The
JohnNXT complete user guide and the main programming topics to get him to work will be
discussed in the following sections.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 357

Figure 8-8. The FSM describing JohnNXT’s behavior

JohnNXT User Guide

Before we get into the programming details, a good user guide to exploit all JohnNXT’s features
is needed. This section will lead you through all JohnNXT’s functions.

Turning It On

Calm down, I’m not teasing you! I know that you know how to turn on two NXTs and how to
start the programs! This section explains how to get JohnNXT working, seeing it as a system
composed of three NXT bricks. Two of them are locally connected with a 6-wire cable, while
the third NXT is the one for the remote control device.

Turn on both the master and the slave NXT in JohnNXT. Then, start the slave program. At
the beginning, the slave performs the initialization of the hardware: it resets the torso to its
downmost position, folds the arms, raises the laser, and then raises the torso to its middle
position again. Only after that can it start receiving and executing the master’s commands.

358 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Now run the master program, which starts by telling the slave to reset all the moving parts,
and then brings the head into the central position. If the master program was started before the
slave, it would hang on, waiting for the slave to respond, and would continue to repeat the mes-
sage until it received the slave acknowledgement (ack), meaning that the action has been
completed. Using this kind of protocol, no command gets lost.

■Note A message-exchanging communication protocol is termed synchronous, if the sender is blocked
until the receiver responds with an ack, and the receiver is blocked until it receives a message. This protocol
guarantees that the two sides are synchronized. On the contrary, if the sender puts the message into a buffer
and continues its execution without waiting for the receiver’s ack, the protocol is termed asynchronous. The
protocol used by JohnNXT is synchronous. This means that if the slave program (receiver) is not responding,
the master program (sender) would become stuck.

After that, you can start the program for the remote control (see Chapter 9); it automati-

cally connects to the master NXT via Bluetooth. If you don’t connect the remote, you’ll get an
error message saying “Remote offline” on the master NXT screen, when trying to activate the
R/C item (Remote Controlled mode) in the JohnNXT menu. Remember that you cannot con-
trol JohnNXT remotely unless you select the R/C mode from the menu first.

Autonomous Behavior
Once both master and slave programs are started, they reset all the moving parts of JohnNXT
into their zero position. If you leave JohnNXT alone, in a quiet environment with nothing in
front of him, he’ll remain in the IDLE mode. He performs random actions, as shown in Figure 8-8.
He also can randomly play some sound clips, such as “Need input,” “Malfunction,” and “Yeah!
Johnny 5! That’s cool!” If he sees an obstacle while in the presence of loud sounds, he’ll lower
his torso and aim the laser until the whole environment becomes calm again. When he simply
sees something, he greets you and waits for you to press the orange button, to enter his menu.

JohnNXT’s Menu

From the menu, you can access the R/C, Line Following, Hand Following, Arms Control, and
Show Off modes. From the menu, you can also choose to come back to the autonomous mode
(IDLE). When you are in the menu, if you don’t press any button for a while, JohnNXT will come
back into autonomous mode automatically.

R/C Mode

This functionality is enabled only if you’ve connected the remote control to the master NXT
via Bluetooth before. In this mode, JohnNXT waits for commands from the remote and exe-
cutes them. As you’ll also see in Chapter 9, the remote device can access all JohnNXT’s features.

The remote program for this particular robot works in two modes, toggled by pressing
both remote buttons together. In the first mode, the joysticks control the treads and buttons
that make the arms move to the open state (right trigger) or to the closed state (left trigger). In
the second mode, the right joystick controls the head, the left joystick controls the torso, the

CHAPTER 8 ■ JOHNNXT IS ALIVE! 359

right trigger makes JohnNXT play a random sound from his repertoire, and the left trigger
arms or disarms the laser.

Line Following Mode

In this mode, you can make JohnNXT follow dark lines on light ground. The robot doesn’t start
going around at once: first, you are asked to sample the dark and light values from the bottom
Light Sensor. The actual reading is shown on the NXT display. Place the JohnNXT line-tracking
sensor on the line (dark) and press the left arrow button, then place it on the ground (light)
and press the right arrow button. This way, the sampled values are stored and used to calibrate
the line-following algorithm.

Press the orange button to start the line-following routine, and press it again to come
back to the JohnNXT menu. If you don’t calibrate the sensor readings, two default values
for light and dark will be used.

Hand Following Mode

In Hand Following mode, JohnNXT centers the head and then swings it left, center, right, cen-
ter, and so on continuously, while staying still in place. When the Ultrasonic Sensor detects
your hand, the robot will drive towards you, going straight or turning according to the actual
position of the head. If the hand is really near, the robot will drive away from you.

Arms Control Mode

In this mode, you can control the arms’ position with sound pulses—for example, clapping
your hands. When entering this mode, JohnNXT measures the ambient noise (so please keep
silent for a short while) and folds its arms; then he waits for sharp sounds, which represent the
commands you can give him:

• One sound: The arms are folded

• Two sounds: The arms are unfolded a bit, so they are vertical

• Three sounds: The arms are completely unfolded, but the hands are still closed

• Four sounds: The hands are open

• Five sounds: The wrists are rotated

Try clapping your hands and observe the text shown on the NXT screen: with every clap,
a new arm state is chosen. If you stop clapping, the arms are moved into the state whose name
is shown on the display. For example, consider starting with folded arms; clap two times and
the arms are unfolded a bit; three claps unfold the arms, keeping the hands closed; and five
claps (the maximum number) cause the hands to open and the wrists to rotate. A single clap
brings the arms to their folded position again. So, you can go from every state to another.

Notice that you must produce the sound sequence with a constant timing, otherwise the
robot won’t behave as you would desire. For example, if you want to open the robot’s hands
starting from the state where the arms are folded, you must clap your hands five times. If you
start clapping at a certain rate, but either the Sound Sensor fails to detect a clap, or you slow
down the clapping rate too much, the robot will assume that the sequence is finished, and it

360 CHAPTER 8 ■ JOHNNXT IS ALIVE!

will move the arms according to the number of sounds detected up till that moment. The pro-
cedure is simple and reliable, but it needs a bit of practice!

Show Off Mode

In this mode, JohnNXT performs a complete demonstration of its features. A sound loop is
played, while JohnNXT moves right in time with it. It’s a pity that I could not fit, in this small-
scale model, a last feature that would be cool: making Johnny stand on his tread tips would
make his dancing performance perfect!

Programming JohnNXT

It’s time to make JohnNXT come alive! A pedantic, detailed description of more than 1,600 lines
of NXC source code that make up the JohnNXT programs (master and slave) would be at the
least boring—for me to write, but more so for you to read. For this reason, I’ll focus only on the
programs’ outlines and on their interesting aspects. Many solutions adopted for the JohnNXT
programs have already been explained in detail in the preceding chapters. I can say for certain
that this chapter’s programs are a big summary of all the programming techniques shown in this
book. I won’t go back to basics to discuss the FSM that implements the autonomous behavior,
the servomotors automagic built-in limit switch technique that was mentioned before, the line-
following routine (like the one seen in Chapter 6), and other minor trivial aspects. In particular,
I’ll spend some time discussing the overall program’s structure and the sound counting routine,
used to control the arm movements.

You can download the complete code for JohnNXT from the Source Code/Download area
of the Apress web site at http://www.apress.com.

Panoramic View of the JohnNXT Software

When you are about to write a program for a complex project, the basic rule is to divide et
impera, the Latin motto corresponding to “divide and conquer.” To maintain the whole pro-
gram easily, you should split it up into small parts; it is a good habit to split every program
into many functions and subroutines. Of course, you already know that, but I mean that the
program should also be divided into many files. So, you’ll have an NXC file with the routines
to manage head movements, another one devoted to remote control command reception,
and so on. Then, in the main file, you just need to include the subfiles with the known pre-
processor directive #include "filename.nxc".

The general working of JohnNXT is shown in Figure 8-8 and is described in the section
“JohnNXT Behavior and Menu.” Now, let’s dive into the details. As you know, JohnNXT is con-
trolled by two NXT bricks: the master, placed in the body, and the slave, the one built in the base.
You need two different programs for these two NXTs. The FSM in Figure 8-8 is implemented in
the master program, while the slave program’s duty is just to receive and execute the commands
from the master program. The whole slave NXT is just an interface to let the master control the
three auxiliary motors attached to it: the torso, the arms, and the laser motors.

As said before, the two NXTs communicate through a standard 6-wire cable connecting
their respective ports 4. So, I prepared a simple library to use this kind of communication, the
High Speed Communication Library, implemented in the file HSlib.nxc. In the following sec-
tion, you’ll learn how to use this library, so you can also reuse it in your own two-NXT robots.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 361

After that, I’ll describe the two programs in an outline form, first starting from the slave, and
then proceeding with the master, where we'll focus on the sound counting routine.

High Speed Communication Library

Exploiting the serial communication behind port 4 is made simple by this NXC library.

• To use the library, simply include it at the top of your program:

#include "HSlib.nxc"

■Caution The HSlib.nxc file must be located in the same folder of your program, otherwise the compiler
won’t be able to find it.

• At the beginning of the program, you can initialize port 4 by calling

SetHSPort();

This is enough to tell the NXT firmware to enable the RS485 chip for the serial

communication.

• To send a string, simply call

SendHSString (msg);

where msg is the string you want to send.

• To send a number, call

SendHSNumber (num);

where num is the integer you want to send.

• To receive a string, make the following call:

result = ReceiveHSString (msg);

After the call, the Boolean result will be true if the buffer is not empty, and the msg

string will contain the received data. If the buffer is empty, or the data is equal to zero,
the result value will be false.

• To receive an integer number, call

result = ReceiveHSNumber (num);

As before, after the call, the Boolean result will be true if the buffer is not empty, and

the num variable will contain the received data. If the buffer is empty, or the data is equal
to zero, the result value will be false. This function, as does the preceding, features
a timeout mechanism to avoid remaining stuck if the high-speed buffer is empty.

Next I’ll describe the two programs in outline form, starting from the slave—the simpler—

and proceeding with the master, where I’ll focus on the sound counting routine.

362 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Slave Program

To start dealing with the slave program, take a look at the program excerpt in Listing 8-1. Some
parts, similar to the programs in the preceding chapters, are omitted. The purpose here is to
give you an idea of what the program outline looks like.

Listing 8-1. The JohnNXT Slave Program Code

#include "J5Defs.nxc"

#include "HSlib.nxc"

//mechanical state variables
short torso_state, arms_state;

//
// LASER //
//

sub Laser (short new_state)
{
[...]

}

//
// ARMS //
//

[...]

sub Arms(short new_state)
{
[...]

}

sub ArmsStepOpen()
{
[...]

}

sub ArmsStepClose()
{
[...]

}

CHAPTER 8 ■ JOHNNXT IS ALIVE! 363

//
// TORSO //
//

[...]

sub Torso(short new_state)
{
[...]

}

sub TorsoStepUp()
{
[...]

}

sub TorsoStepDown()
{
[...]

}

//
// INIT //
//

void J5_Init()
{

SetHSPort();
torso_state = UNKNOWN;
arms_state = UNKNOWN;
Torso(T_DOWN);
Arms(A_FOLDED);
Laser(L_UP);

}

//
// MAIN //
//

// show a message to describe the command being executed
bool ShowRxCommand (short s)
{
[...]
return error ; //returns true if the command is unknown

}

364 CHAPTER 8 ■ JOHNNXT IS ALIVE!

// parse received command and execute it
void ExecuteCommand (short command)
{
if (abs(command)/10 == TORSO_ACTIONS)
{
if (command == T_STEPUP) TorsoStepUp();
else if (command == T_STEPDOWN) TorsoStepDown();
else Torso(command);

}
if (abs(command)/10 == ARMS_ACTIONS)
{
if (command == A_STEP_OPEN) ArmsStepOpen();
else if (command == A_STEP_CLOSE) ArmsStepClose();
else Arms(command);

}
if (abs(command)/10 == LASER_ACTIONS) Laser(command);

}

task main()
{

KeepAliveType kaArgs; // this structure is used to call SysKeepAlive
int cmd;

J5_Init();
Torso(T_MID);
// receive commands from master.
// send an ack meaning "command received"
// execute the command
// send another ack meaning "command executed"
SendHSNumber(ACK_RX);
SendHSNumber(ACK_DONE);
while(true)
{
if (ReceiveHSNumber(cmd))
{

TextOut(0,LCD_LINE3,"send rx ack ");
SendHSNumber(ACK_RX);
ShowRxCommand(cmd);
ExecuteCommand(cmd);
TextOut(0,LCD_LINE3,"send exe ack ");
Wait(100);
SendHSNumber(ACK_DONE);

}
else
{

TextOut(0,LCD_LINE3,"idle ");
SendHSNumber(ACK_ERR);

}

CHAPTER 8 ■ JOHNNXT IS ALIVE! 365

// keep the NXT alive: this system call
// resets the sleep timer, to avoid having the NXT
// turn off automatically when the program is running.
SysKeepAlive(kaArgs);

}
}

In Listing 8-1, you find the subroutines to actuate the three motors (torso, arms, and
laser) using the decision tables (see Chapter 3). The J5_ In it () function initializes the state
variables torso_state and arms_state, and performs the routines to bring the moving parts
into their zero position. The communication between the NXT bricks is set up simply by call-
ing the function SetHSPort(), defined inside the High Speed Communication Library HSlib.nxc.
At the top of the code, you can read the following preprocessor directives:

#include "J5Defs.nxc"

#include "HSlib.nxc"

With the first line, you tell the compiler to include the JohnNXT header file J5Defs.nxc,

where all the robot constant definitions are specified: the motor ports; the sensor ports; and
the opcodes for the various commands written in capital letters, such as A_FOLDED, T_DOWN, or
UNKNOWN, for example. The other inclusion is for the communication library described earlier.
After the initial definitions, the code goes on with the low-level routines for the mechanics.

The program starts executing the main task; here the J5_ In it () function is called. After
that, an infinite loop is started, to receive and execute the commands for the master NXT.

The incoming commands are received using the ReceiveHSNumber(cmd) function. Note
that the ReceiveHSNumber function is called inside the parentheses of the if structure, and so
the value returned by that function affects the subsequent working. If the result returned is true,
it means that no error occurred when receiving the command, and the cmd variable, passed
as an argument, contains the command sent by the master NXT; so, the first branch of the if
structure is taken. The slave sends a first ack ACK_RX to the master, meaning “Hey, I got the
message correctly!” Then it displays information onscreen by calling the ShowRxCommand(cmd)
function, it executes the command with ExecuteCommand(cmd), and after that sends another ack
ACK_DONE to the master, to say “I’ve executed your command!” The reason for using two differ-
ent acks is to inform the master about both reception and execution of the command. So, the
master can choose to wait for the remote operation’s completion (signaled by the ACK_DONE
ack), or to go on with its own task after having sent the command. To tell the master to repeat
the last message, the slave can send a third kind of ack, ACK_ERR, if the ReceiveHSNumber func-
tion returned false, meaning that some error occurred (else branch). The Remote function
(inside the J5_comm.nxc file), used by the master program to send commands to the slave, can
thus exploit the information carried by these different acks to implement a simple error detec-
tion and correction protocol.

The last thing done before closing the loop in main is to invoke the system call
SysKeepAlive. With that, you reset the firmware’s sleep timer, and you can avoid the annoying
issue that causes the NXT to turn off right in the middle of play, even if the program is
running! I once heard about a LEGO sumo competition lost by a robot that had this kind
of problem. You can solve it as shown, or manually change the sleep timer settings using
the NXT on-brick menu.

366 CHAPTER 8 ■ JOHNNXT IS ALIVE!

This is the overall structure of the slave program. It isn’t complicated. The subroutines to
move the auxiliary motors are not reported here, but you can read those in the source code of
JohnNXT; they are simple to understand once you’ve learned the theory behind them. The
FSMs are explained in Chapter 3 and the practical example is in Chapter 4 (Listings 4-6 and
4-7, Tables 4-1 and 4-2).

Master Program

In Listing 8-2, I show the master JohnNXT program’s outline. Even though the real code is
replaced by explanatory comments, the listing is still very long. That’s why I chose not to
report the entire code.

Listing 8-2. The Master Program Outline

#include "J5Defs.nxc"
#include "J5_comm.nxc"
#include "J5_head.nxc"
#include "J5_sounds.nxc"
#include "J5_lineflw.nxc"
#include "J5_handflw.nxc"
#include "J5_show.nxc"
#include "J5_remote.nxc"

// global state variable for JohnNXT behavior FSM
short J5_state;

void J5_ In it ()
{

TextOut(0,LCD_LINE1,"Initializing...");
SetHSPort();
SetSensorLowspeed(EYES);
SetSensorSound(MIC);
Remote(L_UP,ACK_DONE);
Remote(T_MID,ACK_DONE);
Remote(A_FOLDED,ACK_DONE);
head_state = UNKNOWN;
J5_state = IDLE;
Head(CENTER,1);

}

//
// MANIPULATION //
//

// here is the code to control JohnNXT's arms using sound pulses

[...]

CHAPTER 8 ■ JOHNNXT IS ALIVE! 367

//
// SUBROUTINES FOR BEHAVIOR STATES //
//

sub J5_Armed()
{

// lowers torso and laser
// aiming it at whoever is present
// when a loud noise occurs

}

sub J5_Greeting()
{

// makes JohnNXT greet and then waits for someone
// to click the orange button, to enter menu.
// if nothing happens within 3 seconds
// comes back to idle mode

}

sub Idle_treads()
{

// called by J5_Random, moves treads
}

sub J5_Random()
{

// performs random actions
}

sub J5_Idle()
{

// Reads Ultrasonic Sensor and mic values:
// if someone is near, enters GREETING mode,
// but if there is also a loud noise,
// enters ARMED mode.
// Otherwise calls J5_Random,
// then waits for a random amount of time

}

//
// MENU //
//

[...] //menu opcodes definitions

short DisplayMenuItems(short item)
{

368 CHAPTER 8 ■ JOHNNXT IS ALIVE!

//displays the specified menu item
}

short MenuEngine()
{

//calls DisplayMenuItems to browse the menu and returns
//the chosen item

}

sub J5_Menu()
{

//calls MenuEngine() and
//changes J5_state according to menu choice

}

//
// MAIN //
//

task main()
{

KeepAliveType kaArgs;
J5_Init();
J5_state = IDLE;
// J5 behavior FSM
while (true)
{

switch(J5_state)
{

case ARMED:
J5_Armed();
J5_state = IDLE;
break;

case GREETING:
J5_Greeting();
break;

case HANDFOLLOW:
J5_HandFollow();
J5_state = MENU;
break;

case IDLE:
J5_ Idle() ;
break;

case LINEFOLLOW:
J5_LineFollow();
J5_state = MENU;
break;

CHAPTER 8 ■ JOHNNXT IS ALIVE! 369

case MANIPULATION:
J5_Manipulation();
J5_state = MENU;
break;

case MENU:
J5_Menu();
// next state is determined by user choice
break;

case SHOWOFF:
J5_Show();
Remote(T_MID,ACK_DONE);
Remote(A_FOLDED,ACK_DONE);
Remote(L_UP,ACK_DONE);
J5_state = MENU;
break;

case REMOTE_CONTROL:
if (BluetoothStatus(0)==NO_ERR)
{
// if the Bluetooth master NXT (remote control)
// is connected, call J5_Remote_Control()

J5_Remote_Control();
Remote(T_MID,ACK_DONE);
Remote(A_FOLDED,ACK_DONE);
Remote(L_UP,ACK_DONE);

}
else
{
// show error message

ClearLine(3);
TextOut(0,LCD_LINE3,"Remote off l ine !") ;
Wait(1000);

}
J5_state = MENU;
break;

}
// keep the NXT alive: this system call
// resets the sleep timer, to avoid having the NXT
// turn off automatically when the program is running.
SysKeepAlive(kaArgs);

}
}

The master program core is in the main task, where I implemented the FSM that regulates

JohnNXT’s behavior. The diagram of this FSM is shown in Figure 8-8. The structure of main
is quite similar to the skeleton program in Listing 3-4, described in Chapter 3, in the section
“FSM General Implementation.” You can refer to that chapter to go over the FSM argument
again, if you still have some doubts.

370 CHAPTER 8 ■ JOHNNXT IS ALIVE!

At a quick glance, the program looks modular: the working of every FSM state is
implemented in a separate subroutine, to help the readability and maintainability of this
big program. Also, notice the many NXC subfile inclusions at the top of the program.

The master program is not as complicated as you might think. It is long, but it uses many
techniques and tricks that I have already presented throughout the book, with which you might
feel familiar by now. Next, I’ll discuss the part of the master program worthy of a detailed expla-
nation: the FSM that allows you to control JohnNXT’s arms with sounds.

Sound Counting FSM

As described in the section “JohnNXT User Guide,” when you enter the Arms Control mode in
JohnNXT’s menu, you can control the position of its arms with sound pulses. Now, let’s analyze
the mechanism that makes this possible: the sound counting FSM, illustrated in the diagram in
Figure 8-9.

Figure 8-9. The sound counting FSM diagram

Its implementation code, whose outline was included in Listing 8-2, is reported in
Listing 8-3.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 371

Listing 8-3. The Sound Counting FSM Implementation, to Control JohnNXT’s Arms with Sounds

//

// MANIPULATION //
//

#define E_EXIT 1
#define E_TRIGGER 2
#define E_ELAPSE 3
#define E_TIMEOUT 1300
#define FSM_IDLE 0
#define FSM_COUNTING 1

int MeasureNoise ()
{
int n;
//estimate ambient noise by averaging 10 readings
n = 0;
repeat(10)
{

n += Sensor(MIC);
Wait(20);

}
n /= 10;
return n;
}

// this function waits for one of three events:
// - someone clicks the orange button
// - the timer elapses
// - a loud sound pulse occurs
// and returns a number to describe which event
// occurred first
short WaitEvent(short noise, unsigned long timer)
{

short event = 0;
while (event==0)
{
if (ButtonPressed(BTNCENTER,true)==1)
{

event = E_EXIT;
while(ButtonPressed(BTNCENTER,true)==1);
TextOut(5,LCD_LINE6,"Button");

}
else if (CurrentTick() > timer + E_TIMEOUT)
{

event = E_ELAPSE;
TextOut(5,LCD_LINE6,"Elapse");

372 CHAPTER 8 ■ JOHNNXT IS ALIVE!

}
else if (Sensor(MIC)>noise+50)
{

event = E_TRIGGER;
TextOut(5,LCD_LINE6,"*");
until(Sensor(MIC)<noise+40);
Wait(10);

}
}
ClearLine(6);
return event;

}
// this subroutine shows the actual state of the arms FSM
sub ShowArmsState(short state, short l ine)
{

ClearLine(line);
switch(state)
{

case A_FOLDED: TextOut(5,(8-line)*8,"Folded"); break;
case A_UP: TextOut(5,(8-line)*8,"Up"); break;
case A_CLOSED: TextOut(5,(8-line)*8,"Hands closed"); break;
case A_OPEN: TextOut(5,(8-line)*8,"Hands open"); break;
case A_ROTATE: TextOut(5,(8-line)*8,"Wrist rotate"); break;

}
}

// this subroutine manages the arms FSM, to command the arms with
// sound pulses
sub J5_Manipulation()
{

unsigned long soundFSMtimer;
short count = A_FOLDED;
short state = FSM_IDLE;
short event;
bool exit;
short noise;
ClearScreen();
TextOut(0,LCD_LINE1,"Arms control");
// measure background noise
noise = MeasureNoise();
Remote(A_FOLDED,ACK_DONE);
// the sound counting FSM is implemented as follows
unt i l (exit)
{
if (state == FSM_IDLE)
{

CHAPTER 8 ■ JOHNNXT IS ALIVE! 373

// wait for an event
event = WaitEvent(noise,soundFSMtimer);
// perform the actions for this state
if (event == E_TRIGGER)
{

state = FSM_COUNTING;
count = A_FOLDED;

}
else if (event == E_ELAPSE)
{

// reset the timer
soundFSMtimer = CurrentTick();

}
else if (event == E_EXIT) exit = true;

}
else if (state == FSM_COUNTING)
{

// displays information onscreen line 3
ShowArmsState(count,3);
// wait for an event
event = WaitEvent(noise,soundFSMtimer);
// perform the actions for this state
if (event == E_TRIGGER)
{

count++;
if (count>A_ROTATE) count = A_ROTATE;
// reset the timer
soundFSMtimer = CurrentTick();

}
else if (event == E_ELAPSE)
{

// reset the timer
soundFSMtimer = CurrentTick();
Remote(count,ACK_DONE);
state = FSM_IDLE;

}
else if (event == E_EXIT) exit = true;

}
}

}

The J5_Manipulation() subroutine is called by the principal JohnNXT FSM from the main

task, when you choose the Arms Control item from the JohnNXT menu. This subroutine starts
measuring the average ambient noise by calling the MeasureNoise() function, which reads the
Sound Sensor ten times and then computes the arithmetic average.

374 CHAPTER 8 ■ JOHNNXT IS ALIVE!

■Tip Averaging many measurements over time is useful for lowering the uncertainty of the whole measure-

ment. For example, imagine making a single measurement of the sound level, right when an unpredictable
loud noise occurs. You would get a bad estimation of the real environment’s background noise: in fact, you
expected to get a low percentage value, but your single measurement has returned a high value, because of

that sudden loud noise. In robotics, it’s a bad habit to trust a single measurement. To avoid having a single
measurement corrupt your estimation with its high uncertainty, it’s common use to average many measure-
ments over time. Every time you make a new measurement, it contributes to lowering the estimation’s
uncertainty.

To compute the average value, you simply sum these ten readings in the variable n (initially

set to zero) and then divide it by ten. This noise measurement is then used as a threshold to
detect loud sounds, such as hand claps or whistles.

As previously said, the FSM in Figure 8-9 is implemented in the J5_Manipulation() sub-
routine. The code’s meaning is straightforward. In both the two states, the WaitEvent function
detects the events. This function waits for one of three kinds of events, by returning the corre-
sponding opcode to the FSM: the orange NXT button click that causes the whole routine to
exit, the timer elapsing, or a loud sound’s detection.

In the beginning, the FSM is in IDLE mode, and there it remains until a loud sound is
detected. The count variable is initialized with the A_FOLDED value. The first sound detected
is an event that causes the state to switch from IDLE to COUNTING, and the count variable to
assume the value A_FOLDED, which is the first value among the constants that describe the
arms’ state.

While in the COUNTING state, a new sound detection is an event that causes the count vari-
able to be incremented by one (limited by the maximum value of A_ROTATE) and the timer to
be reset. If you stop clapping, the timer elapses, and the arms are actuated according to the
count variable’s value. The master actuates the arms by calling the Remote(count, ACK_DONE)
function, which sends the count variable value as a command to the slave NXT. The count vari-
able can assume one of the values of the possible commands for the arms: remember that the
constants in capital letters are indeed aliases for numerical values, declared in JohnNXT’s
header file J5Defs.nxc. So, by passing count to the Remote function, you’re just telling the FSM
implemented in the slave NXT program to bring the arms into one of their possible states. After
the arms’ actuation, the state comes back to IDLE and the timer is reset. If the timer elapses
while the FSM is in IDLE mode, it does not cause any action.

If you were paying attention, you would notice that the code that implements the timer is
the same as I described in Chapter 6, using the soundFSMtimer variable and the CurrentTick()
NXC API function. Now you know the internals of the sound counting FSM.

JohnNXT Programming Guide

The programs provided are just a start! You can write your own custom programs for JohnNXT, to
make him do whatever you want. You could develop an articulated master program to give
JohnNXT a real autonomous behavior, or you could use this elegant hardware platform to
attempt some new software experimentation. To help you in this task, I have provided here
a short programming guide, to let you exploit all the ready-to-use functions to make JohnNXT’s

CHAPTER 8 ■ JOHNNXT IS ALIVE! 375

parts move, so you won’t have to worry about the low-level mechanical hassles. Whatever you
write, keep in mind that you don’t need to modify the slave program.

Your work can be focused on the master program by following some directions. First of
all, you must have the files shown in Table 8-1 in the same folder; you must include them in
the master program’s code using the #include directive. You can compile and run some sub-
files as stand-alone, because they contain a main task that is compiled only when the file is not
included in the JohnNXT master program.

Table 8-1. The Subfiles That Must Always Be Included in the Master NXT Program

File Functions Provided Can Run As Stand-Alone

J5Defs.nxc Contains all the definitions and macros for JohnNXT No

HSlib.nxc This is the High Speed Communication Library to use No
high-speed wired communication

J5_head.nxc Contains the FSM to manage head movements Yes

J5_comm.nxc Contains the Remote function to send commands to No
the slave NXT

J5_handflw.nxc Contains the hand-following algorithm Yes

J5_lineflw.nxc Contains the line-following algorithm Yes

J5_remote.nxc Receives commands from the remote control Yes

J5_show.nxc Performs the show, featuring all the actions available Yes

J5_sounds.nxc Plays the sound files containing J5 phrases No

You can use Table 8-2 as a quick guide for the master NXT Input/Output devices’ aliases

defined in the JohnNXT header file (J5Defs.nxc). Table 8-4 contains the definitions for the
slave NXT. If you have any doubts about constants or ports, please check the JohnNXT defini-
tions header file.

Table 8-2. Master NXT Constant Definitions for Motors and Sensors

Device Port Alias

Right tread motor OUT_A R_TREAD

Left tread motor OUT_C L_TREAD

Both treads OUT_AC TREADS

Head motor OUT_B HEAD

Sound Sensor IN_1 MIC

Line-tracking sensor IN_2 LIGHT

Ultrasonic Sensor IN_3 EYES

High-speed serial port IN_4 COMM

While reading the following paragraphs, I recommend you have a look at the source code

of the various subfiles. The code to control the treads is the master program; to know where to
find the code that controls a particular feature, check Table 8-1.

376 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Moving the Treads

The tread motors are connected to the master NXT and are the simplest to use. You can con-
trol them by using the common OnRev and OnRevSync statements to let JohnNXT go forward
and turn, or the OnFwd and OnFwdSync statements to go in reverse. The inversion of directions is
due to the particular motor’s position and gearing. To stop the treads, just use Off or Float, to
brake or to stop them gently, respectively.

Moving the Head

The head motor is connected to the master NXT. To move the head, I advise you against directly
turning the motor on and off, but to use instead the FSM-regulated function that I wrote. In fact,
if you moved the head with the basic OnFwd/OnRev functions, you would lose control of the head’s
position, and you wouldn’t know if the neck had reached its turning limits. You can use the Head
function after having included the file J5_head.nxc.

To move the head, use the following code, where direction can be CENTER, RIGHT, or LEFT,
and the scale_factor can be a small integer number (normally 1):

Head (direction, scale_factor)

The scale_factor is a number used as a divisor to turn the head less than the normal

angle. For example, a scale_factor equal to 1 makes the head rotate by the total range, while
a scale_factor equal to 2 makes the head rotate at an angle that is half the total excursion.
Unless you need small movements, always keep this number equal to 1.

To reset the head to the center at the beginning of a program, write the following code:

head_state = UNKNOWN;

Head(CENTER,1);

The head_state variable is the one that is used to keep track of the position of the head. So,

you must not assign it a value directly in your programs, as you would mess up the way the head
FSM works. As the only exception to this rule, you need to change the head_state value explicitly
when you want to center the head using the torque sensing limit switch. In fact, if the state is
UNKNOWN when the Head(CENTER,1) is called, this function uses the procedure to center the head
based on motor torque sensing. It turns the head to the right, until the motor feels blocked, and
then rotates the head back to the center. After this initial reset, the Head subroutine itself changes
the head_state variable, so you don’t have to change it manually anymore. To turn the head left
or right, simply use Head(LEFT,1) or Head(RIGHT,1), respectively. By calling Head(CENTER,1) again,
the head is brought to the center without using the reset routine, because the head_state variable
is assigned a value different from UNKNOWN. The head is rotated by a precise number of degrees,
according to the head_angles decision table.

Playing Sounds

You must download sound files for JohnNXT into the master NXT by using BricxCC (see
Appendix A). To play sounds, use

Sound (sound, wait_completion)

CHAPTER 8 ■ JOHNNXT IS ALIVE! 377

where sound is one of the constants in Table 8-3 and where the wait_completion can be true
(the program waits until the sound has been completely executed) or false (the program
starts the sound and continues at once).

Table 8-3. Opcodes to Play JohnNXT Sounds

Action Constant

Play “Number Five is alive!" S_ALIVE1

Play “I am alive.” S_ALIVE2

Play “Yeah! Johnny 5! That’s cool!” S_COOL

Play “Hello, bozos!” S_HELLO

Play “Need input!” S_INPUT

Play “Malfunction!” S_MALFUNCTION

Play soundtrack loop S_LOOP

Stop sounds S_NONE

Play one of the preceding sounds randomly S_RANDOM

Moving the Slave NXT Motors

The torso, arms, and laser motors are connected to the slave NXT on the ports specified in
Table 8-4.

Table 8-4. Slave NXT Constant Definitions for Motors and Sensors

Device Port Alias

Torso motor OUT_A TORSO

Arms’ motor OUT_B ARMS

Laser treads OUT_C LASER

Laser-tip Light Sensor IN_1 LASER_TIP

You can control those motors by calling the following function (implemented inside

J5_comm.nxc) within JohnNXT’s master program:

Remote (opcode, ack)

opcode is one of the constants in Table 8-5, and ack can be either ACK_RX or ACK_DONE.

With ACK_RX, the master program just waits for the slave to receive the command, while with
ACK_DONE, the master program hangs on until the slave has finished the action it was told to do.
The constants listed in Table 8-5 are used in the slave program both as commands to be executed
and as state descriptions.

378 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Table 8-5. Constant Definitions to Move Torso, Arms, and Laser

Output Device Action Constant

Torso motor Lower torso to downmost position using torque sensing T_DOWN

Torso motor Bring torso to middle position T_MID

Torso motor Bring torso to up position T_UP

Torso motor Bring torso to upmost position T_UPMOST

Torso motor Move torso a step up T_STEPUP
Torso motor Move torso a step down T_STEPDOWN

Arms motor Fold the arms A_FOLDED

Arms motor Move forearms up A_UP
Arms motor Close hands A_CLOSED

Arms motor Open hands A_OPEN

Arms motor Rotate wrists A_ROTATE
Arms motor Step towards open hands state A_STEP_OPEN

Arms motor Step towards folded arms state A_STEP_CLOSE

Laser motor Raise laser L_UP

Laser motor Lower laser L_DOWN

Laser light Turn laser tip on L_ON

Laser light Turn laser tip off L_OFF
Laser light Blink laser tip L_BLINK

This concludes the programming guide, a sort of handy Software Development Kit (SDK)

intended for those who want to write custom programs for JohnNXT. Now that you know what’s
running inside JohnNXT’s brain, it’s time to put him together.

Building JohnNXT

Constructing JohnNXT takes quite a long time and more than a thousand LEGO elements. As
stated at the beginning of this chapter, you need more than two NXT sets’ parts, because many
of them are not included in the standard set—just to name a few, the neck pistons, the tread
links, and the arms’ chain links. The complete bill of materials is shown in Figure 8-10, and the
textual list in Table 8-6.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 379

Figure 8-10. The bill of materials for JohnNXT

380 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Table 8-6. JohnNXT Bill of Materials

Quantity Color Part Number Part Name

11 Dark gray 32316.DAT TECHNIC Beam 5

5 Light gray 44294.DAT TECHNIC Axle 7

4 Dark gray 32009.DAT TECHNIC Beam Liftarm Bent 45 Double

5 Black 3737.DAT TECHNIC Axle 10

5 55804.DAT Electric Cable NXT 20cm

3 55805.DAT Electric Cable NXT 35cm

3 55806.DAT Electric Cable NXT 50cm

11 White 32525.DAT TECHNIC Beam 11

1 Black 3708.DAT TECHNIC Axle 12

3 White 41239.DAT TECHNIC Beam 13

6 White 32278.DAT TECHNIC Beam 15

6 53787.DAT MINDSTORMS NXT Motor

2 53788.DAT MINDSTORMS NXT

3 Black 45590.DAT TECHNIC Axle Joiner Double Flexible

4 Black 3706.DAT TECHNIC Axle 6

16 Dark gray 32348.DAT TECHNIC Beam 7 Liftarm Bent 53.5 (4:4)

3 White 32527.DAT TECHNIC Panel Fairing #5

2 Black 2696.DAT Tire Model Team

1 55963.DAT Electric MINDSTORMS NXT Sound Sensor

2 55969.DAT Electric MINDSTORMS NXT Light Sensor

11 White 32524.DAT TECHNIC Beam 7

3 Black 3707.DAT TECHNIC Axle 8

1 Dark gray 32271.DAT TECHNIC Beam 9 Liftarm Bent 53.5 (7:3)

2 Black 32293.DAT TECHNIC Steering Link 9L

1 53792.DAT MINDSTORMS NXT Ultrasonic Sensor

9 White 40490.DAT TECHNIC Beam 9

8 Light gray 32123.DAT TECHNIC Bush 1/2 Smooth

1 Light gray 30374.DAT Bar 4L Light Saber Blade

14 Black 3705.DAT TECHNIC Axle 4

2 Light gray 55615.DAT TECHNIC Beam 5 Bent 90 with 4 Pins

2 Light gray 9244.DAT TECHNIC Universal Joint

23 Dark gray 32140.DAT TECHNIC Beam 5 Liftarm Bent 90 (4:2)

2 Light gray 3021.DAT Plate 2 3

2 White 2695.DAT Wheel Model Team

1 Black 2905.DAT TECHNIC Liftarm Triangle

CHAPTER 8 ■ JOHNNXT IS ALIVE! 381

Quantity Color Part Number Part Name

1 Black X344.DAT TECHNIC Gear 36 Tooth Double Bevel

21 Light gray 32073.DAT TECHNIC Axle 5

14 Light gray 3649.DAT TECHNIC Gear 40 Tooth

17 Dark gray 32526.DAT TECHNIC Beam 7 Bent 90 (5:3)

3 White 32528.DAT TECHNIC Panel Fairing #6

4 Dark gray 6632.DAT TECHNIC Beam 3 0.5 Liftarm

1 Light gray 32269.DAT TECHNIC Gear 20 Tooth Double Bevel

4 Light gray 32556.DAT TECHNIC Pin Long

33 Black 6558.DAT TECHNIC Pin Long with Friction and Slot

12 Dark gray 42003.DAT TECHNIC Axle Joiner Perp. with 2 Holes

8 Dark gray 41678.DAT TECHNIC Axle Joiner Perp. Double Split

5 Black 32136.DAT TECHNIC Pin 3L Double

11 Light gray 4519.DAT TECHNIC Axle 3

3 Black 32072.DAT TECHNIC Knob Wheel

14 Light gray 48989.DAT TECHNIC Axle Joiner Perp. with 4 Pins

2 Black 32054.DAT TECHNIC Pin Long with Stop Bush

13 Light gray 3648.DAT TECHNIC Gear 24 Tooth

9 Black 32184.DAT TECHNIC Axle Joiner Perpendicular 3L

22 Dark gray 32523.DAT TECHNIC Beam 3

3 Black 32034.DAT TECHNIC Angle Connector #2

2 Black 32034.DAT TECHNIC Angle Connector #2

1 White 6536.DAT TECHNIC Axle Joiner Perpendicular

54 Blue 43093.DAT TECHNIC Axle Pin with Friction

4 Light gray TECHNIC Hose 2L

5 Light gray 6536.DAT TECHNIC Axle Joiner Perpendicular

2 White 6536.DAT TECHNIC Axle Joiner Perpendicular

20 Black 32062.DAT TECHNIC Axle 2 Notched

4 Light gray 4019.DAT TECHNIC Gear 16 Tooth

2 White 32192.DAT TECHNIC Angle Connector #4 (135 degree)

144 Black 2780.DAT TECHNIC Pin with Friction and Slots

2 White 6538B.DAT TECHNIC Axle Joiner Offset

3 Black 32039.DAT TECHNIC Connector with Axlehole

4 White 32039.DAT TECHNIC Connector with Axlehole

2 White 75535.DAT TECHNIC Pin Joiner Round

9 Dark gray 32291.DAT TECHNIC Axle Joiner Perp. Double

Continued

382 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Table 8-6. Continued

Quantity Color Part Number Part Name

2 White 32015.DAT TECHNIC Angle Conn. #5 (112.5 degree)

1 Black 4716.DAT TECHNIC Worm Screw

244 Black 3873.DAT TECHNIC Chain Tread

4 Dark gray 6632.DAT TECHNIC Beam 3 0.5 Liftarm

2 White 3713.DAT TECHNIC Bush

4 Light gray 3647.DAT TECHNIC Gear 8 Tooth

22 Light gray 3713.DAT TECHNIC Bush

2 Light gray 2555.DAT Tile 1 1 with Clip

6 Black 32013.DAT TECHNIC Angle Connector #1

84 Black 3711.DAT TECHNIC Chain Link

6 Light gray 2736.DAT TECHNIC Axle Towball

1 Dark gray 43857.DAT TECHNIC Beam 2

2 White 32016.DAT TECHNIC Angle Conn. #3 (157.5 degree)

2 Light gray 41677.DAT TECHNIC Beam 2 0.5 Liftarm

2 Dark gray 41677.DAT TECHNIC Beam 2 0.5 Liftarm

10 White 41677.DAT TECHNIC Beam 2 0.5 Liftarm

2 Black 32270.DAT TECHNIC Gear 12 Tooth Double Bevel

4 Dark gray 6575.DAT TECHNIC Cam

2 x253.DAT TECHNIC Pneumatic Cylinder Small

4 Tan 3749.DAT TECHNIC Axle Pin

1,042 parts total (more than two NXT retail set parts are needed)

You can obtain LEGO spare parts from LEGO Education (http://www.legoeducation.com/

global.aspx), BrickLink (http://www.bricklink.com/), and LEGO Factory Pick a Brick (http://
us.factory.lego.com/), even though the TECHNIC section is not well furnished at the moment.
Also, a good place to find LEGO spares remains eBay (http://www.ebay.com). For those who
live in Italy, a good resource is CampuStore (http://www.campustore.it/lego).

This time, the building phase is more challenging than for the other robots in this book,
but once finished, it will give you great satisfaction. Every JohnNXT subassembly will reveal
many interesting mechanical aspects for you, and each one will teach you something.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 383

• The torso motor subassembly shows you how to get a liftarm to rotate with a huge
torque, to raise heavy loads, such as JohnNXT’s body. Here symmetry is important,
because loading an axle (or a gear) on just one side would twist it and you could run the
risk of breaking it. In this assembly, notice that the geartrain is repeated on both sides
of the motor. Also, to avoid ungearings, all the axle-bearing gears that are subject to
high torque are kept together by beams.

• The torso subassembly shows you how to use a servomotor as an integral part of

a robot. Here, the motor shaft not only drives the arms’ mechanism, but also is the
pivot for the whole shoulders’ frame. The lever system to raise the whole body shows
you how to transmit a translational movement beyond a narrow bent structure (the
lower body’s top joint with the torso).

• The treads’ frames teach you how to build extremely strong structures. Triangular

frames are in fact crushproof, contrary to the rectangular ones.

• The arms feature the double-drive mechanism explained in the section “Johnnicle: My
LEGO Johnny 5 Chronicle” to fold the forearm and grab objects. The poseable shoulder
shows how you can use a LEGO universal joint to transmit motion through a bendable
joint, on the condition that the hinge is aligned with the universal (cardan) core.

• The parallelogram frame of the upper body shows how to keep complex moving struc-

tures always vertical with respect to the ground.

• The laser levers system shows you how to obtain a combined rotational and transla-

tional movement.

You must insert two LEGO yellow rubber bands in the elbows as shown in Figure 8-11

(steps a through f). There, you can see the left elbow montage; repeat the same procedure for
the right elbow before attaching the arms to the shoulders. Make sure to align the forearms’
levers before adding the chain to the gears. If their position is not correct, the final result will
be asymmetrical once they are attached to the shoulders’ driving axle.

384 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building the treads’ motors subassembly. In Step 1, insert a tan axle pin in the motor shaft.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 385

Build the spacer between the motors.

386 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the Light Sensor pointing downwards; it’s used to follow lines on the ground.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 387

Finish the sensor holder and add the left tread motor. In Step 12, add two black pins and a tan
axle pin.

388 CHAPTER 8 ■ JOHNNXT IS ALIVE!

In Step 17, add four black pins in the back of the motors.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 389

Add an 11-hole beam and a 9-hole beam, attaching them with the gray Axle Joiners Perpendicular
with 4 Pins.

390 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the right part of the frame that will connect the tread motors to the slave NXT.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 391

Complete the frame with its left part.

392 CHAPTER 8 ■ JOHNNXT IS ALIVE!

The treads’ motors’ subassembly is complete.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 393

Add two 20cm (8 inch) cables.

394 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building the slave NXT subassembly.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 395

Turn the NXT upside down and add the parts that will be connected to the rest of the base.

396 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the NXT to the treads’ motors’ assembly.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 397

Start building the passive wheel holder assembly.

398 CHAPTER 8 ■ JOHNNXT IS ALIVE!

In Step 44, add the first beam that will be used to support the lower body’s lifter mechanism.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 399

Complete the passive wheel holder.

400 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the passive wheel holder to the rest of the base.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 401

Turn the model upside down and build the frame to hold the passive wheel holder firmly with
the NXT. Use a 13-long beam.

402 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build the passive wheel.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 403

Insert the passive wheel in place, holding it in place with a bush.

404 CHAPTER 8 ■ JOHNNXT IS ALIVE!

The base assembly of JohnNXT is complete.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 405

Start building the right part of the lower body. Attach the 15-long beam to the 13-long beam as
shown.

406 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Complete the right part of the lower body.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 407

Start building the torso’s lifter mechanism.

408 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Turn the motor as shown.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 409

Continue building the torso’s lifter mechanism.

410 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build the levers’ structure that will lift the whole JohnNXT body. Use two 7-long beams and a 9-
long beam.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 411

When adding the 40-tooth gear, make sure that the 7-long axle is correctly inserted in one of the
gear’s axleholes.

412 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the bent beam that cross-braces the geartrain axles, to avoid gear scratching. Add the
symmetric 40-tooth gear and 8-tooth gear to complete the geartrain.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 413

Add the other cross-bracing beam. Then turn the model and add the pins where shown.

414 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Complete the torso’s lifter mechanism.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 415

Attach the subassembly you just finished to the right part of the lower body.

416 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Turn the model and add two black pins.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 417

Add a blue axle pin in the top hole of the bent beam, just over the black pin. Add the liftarm that
will be used to hold the cable of the arms’ motor.

418 CHAPTER 8 ■ JOHNNXT IS ALIVE!

The knob wheel is used to move the torso manually.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 419

Turn the model and add the auxiliary lever. Use a long gray pin.

420 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building the upper body.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 421

Build the right part of the upper body.

422 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the two submodels together.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 423

Build the left part of the upper body.

424 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Complete the upper body’s lid shape.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 425

Add the arms’ motor.

426 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Hold the motor in place with the 5-long axle and add the Sound Sensor.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 427

Rotate the body so you can see it from behind. Insert the upper body’s assembly onto the rest of
the body.

428 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add two 7-long beams.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 429

Build the left part of the lower body. In Step 128, add the blue axle pin in the top axlehole of the
bent beam.

430 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the left side of the body to the rest of the body.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 431

The body is complete.

432 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the body to the base and block it with two long pins with a stop bush and a 5-long axle in
the back.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 433

Try turning the knob wheel on the lifter’s motor shaft to test whether the body’s lifter mechanism
is working.

434 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Turn the model and attach the torso’s lifter motor to slave NXT port A using a 20cm (8 inch) cable.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 435

Attach the arms’ motor to slave NXT port B using a 35cm (14 inch) cable. Make sure to pass the
cable where shown.

436 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the axle joiner to hold the cable in place.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 437

Check if all the cables are placed correctly.

438 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building the right tread’s assembly. Use a 15-long beam and a 9-long beam.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 439

Insert the three 40-tooth gears, used as hubs.

440 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build the assembly that helps to form the strong triangular shape of the tread.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 441

Add a 15-long beam and a 9-long beam.

442 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Complete the triangular frame.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 443

Add a blue axle pin in the black joiner. Turn the model and add three 40-tooth gears and two
24-tooth gears.

444 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build 2 treads of 61 links each. Close them around the large gears. The right tread assembly is
complete.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 445

Start building the left tread assembly. Use a 15-long beam and a 9-long beam.

446 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Insert the three 40-tooth gears, used as hubs.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 447

Build the assembly that helps form the strong triangular shape of the tread.

448 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add a 15-long beam and a 9-long beam.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 449

Complete the triangular frame.

450 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add a blue axle pin in the black joiner. Turn the model and add three 40-tooth gears and two
24-tooth gears.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 451

Build 2 treads of 61 links each. Close them around the large gears. The left tread assembly is
complete.

452 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach both treads in place. The driving axles go in the motor shafts, while the black pins go in
the corresponding holes in the 15-long beams.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 453

Attach a 50cm (20 inch) cable to the Sound Sensor. Leave the other end floating; you’ll attach it
in the next steps.

454 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Insert the master NXT brick in place. Notice that the two long pins go in the holes on the NXT’s
back. Attach the Sound Sensor cable to port 1. Attach the left tread’s motor to port C and the
right tread’s motor to port A.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 455

Attach the line-tracking Light Sensor to master NXT input port 2, using a 20cm (8 inch) cable.

456 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add a 13-long beam to hold the treads’ assemblies together.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 457

Turn the model and block the NXT with the assembly shown.

458 CHAPTER 8 ■ JOHNNXT IS ALIVE!

The Sound Sensor cable must pass between the NXT and the block just added.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 459

The base and body assemblies are complete. The master NXT is attached to the body, leaving the
space necessary for the Li-Ion battery pack.

460 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building the shoulders.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 461

You’re building the mechanism to turn the neck.

462 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the axle and the gear for moving the arms. Add the fairing panel #6.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 463

Add the symmetric panel #5 and another couple panels #5 and #6 to shape the round shoulders
of JohnNXT.

464 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build the hinges for the arms.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 465

Start building the left arm. The universal joint brings the movement over the shoulder hinge.
Add an 11-long beam.

466 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add three blue axle pins and the elbow liftarm. The small white 1 2 beam holds the rubber
band on the elbow.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 467

Add the 16-tooth gear that keeps the arm chain in tension.

468 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build the left forearm. In step 207, add two blue axle pins.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 469

Attach the forearm to the arm.

470 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build the left hand.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 471

If splitting a rubber joiner in two does not bother you, prepare the finger grippers as shown.
Otherwise, skip this step; the hand won’t have friction on grasped objects.

472 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the hand to the forearm and add a long steering link.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 473

Attach 42 chain links and wrap them on the arms’ gears as shown. The left arm is complete.

474 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building the right arm. The cardan joint brings the movement over the shoulder hinge.
Add an 11-long beam.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 475

Add three blue axle pins and the elbow liftarm. The small white 1 2 beam holds the rubber
band on the elbow.

476 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the 16-tooth gear that keeps the arm chain in tension.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 477

Build the right forearm. In Step 234, add two blue axle pins.

478 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the forearm to the arm.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 479

Start building the right hand.

480 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Again, if cutting LEGO parts does not bother you, prepare the finger grippers, splitting the rub-
ber joiner as shown. Otherwise, skip this step; the hand won’t have friction on grasped objects.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 481

Attach the hand to the forearm and add a long steering link.

482 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Join 42 chain links and wrap them on the arms’ gears as shown. Make sure to align the forearm
to the left one before adding the chain to the gears. The right arm is complete.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 483

Figure 8-11. This composite figure shows how to insert a LEGO yellow rubber band in the left
elbow. Repeat this procedure also for the right elbow, before attaching the arms to the shoulders.

484 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach both arms to the shoulders.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 485

This is the last nerve-wracking rubber joiner cutting. Again, you can avoid this step.

486 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the shoulders to the whole model, aligning the bottom holes with the motor shaft. Insert
the axle that brings the movement to the arms and blocks the shoulders in place. You can turn
the knob to move the arms manually.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 487

Start building the back of JohnNXT.

488 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Complete the back of the robot.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 489

Attach the back assembly to the shoulders.

490 CHAPTER 8 ■ JOHNNXT IS ALIVE!

These two bent beams complete the upper body’s structure.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 491

The upper body is a parallelogram structure. This way, the shoulders can move up and down,
keeping the same inclination with respect to the ground.

492 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building JohnNXT’s head. Add fairing panels #5 and #6.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 493

Add a 4-long bar (like the minifigure’s saber blades). Build the eyelids.

494 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Continue building the head, adding the Ultrasonic Sensor. This one is similar to J5’s own head!

CHAPTER 8 ■ JOHNNXT IS ALIVE! 495

Build the neck. Add a bush and push the axle to lock the sensor to the rest of the head.

496 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add a piston and the decorative hoses.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 497

Complete the head, adding the other piston and hoses.

498 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the head to the axle.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 499

Attach a 35cm (14 inch) cable between the respective ports 4 of both NXTs. This cable is used for
high-speed serial communication.

500 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Attach the Ultrasonic Sensor to master NXT input port 3 using a 50cm (20 inch) cable. Pass the
cable where shown under the white 7-long beam to which the NXT is attached. Try to keep the
cable central. Pull it to get the maximum length sticking out the back, so that it is free to move
together with the head.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 501

Start building the head’s motor assembly.

502 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Complete the head’s motor assembly.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 503

Attach this motor to the rest of the robot, blocking it in place with a bush.

504 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Build the back of the head.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 505

Attach the head’s motor to master NXT port B using a 20cm (8 inch) cable.

506 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Start building the laser’s assembly.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 507

The levers’ system is complete.

508 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Add the Light Sensor that simulates the laser blinking.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 509

Turn the model and complete the laser weapon.

510 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Turn the laser and complete the assembly.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 511

Attach the laser in place, on the 12-long axle. The laser moves with the torso.

512 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Here’s how the model looks once the laser is attached.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 513

Turn the model and attach the laser’s motor to slave NXT port C using a 35cm (14 inch) cable.

514 CHAPTER 8 ■ JOHNNXT IS ALIVE!

Turn the model again and attach the Light Sensor of the laser to slave NXT port 1 using a 50cm
(20 inch) cable.

CHAPTER 8 ■ JOHNNXT IS ALIVE! 515

Build the assembly that blocks the NXT in place. This block must hold the cable for the laser
sensor and for the high-speed communication.

516 CHAPTER 8 ■ JOHNNXT IS ALIVE!

The protagonist of this chapter is a compact wheeled robot equipped with a frontal
double-sensor scanner and a grabbing arm. Its design will show you how a single motor can
accomplish more than a single function. In Figure 7-1, you can see the Mine Sweeper with the
abyss-avoidance sensor mounted. In the frontal scanner a Light Sensor is used to detect dark
LEGO bricks on white ground. In addition, the Ultrasonic Sensor is mounted downwards as an
abyss detector, so if the robot is going to work on upland planes (tables), it won’t fall down.

Figure 7-1. The Mine Sweeper is equipped with a ravine-avoidance sensor. The mines shown
here are built using two black 2 4 LEGO bricks.

The robot you are going to build could have been given many other different names:
garbage collector, floor sweeper, object collecting contraption, and so on. If “Mine Sweeper”
recalls the sadness of some human invention, call the robot whatever else you want, and
I won’t take offense.

281

282 CHAPTER 7 ■ MINE SWEEPER

The robot can collect only small objects with a regular shape, distinguished by their dark
color on a light ground; it is not able to collect objects of any color and any shape. Because it is
specialized for collecting only a precise kind of object, it came to mind to call it a mine sweeper.
The real bomb-disposal robots use particular metal detectors to find mines on the ground and
collect them using skilled robotic arms; our LEGO Mine Sweeper has a frontal sensor and
a grabber arm, and this gave me the idea for the name.

Getting More Actions from a Single Motor

The arm mechanism is designed to grab objects, lift them, and store them into the robot’s
internal hold, performing all these actions with only one motor. This is particularly interest-
ing, because usually one motor corresponds to one degree of freedom (DOF).

UNDERACTUATION

We talk about underactuation, in robotics, when dealing with mechanical devices that have a lower number
of motors than degrees of freedom.

The DOF of a mechanical system is defined as the number of independent parameters needed to
characterize its state. In other words, if a motor can drive only a mechanism, a robot must have a motor
for each action it can do. For example, in a wheeled robot a motor controls each wheel; in a steering vehicle
the motor that drives the wheels cannot also steer; in the official NXT robotic arm, the motor used to grab
the balls does not move the arm up and down. However, having an actuator for every DOF can become
a problem! In a robotic grasping hand, using an actuator for every phalanx leads to a huge number of
actuators: the device’s versatility would increase, but its cost, complexity, and weight would become
unmanageable.

In the Mine Sweeper’s case, its arm can both grab and lift objects. The grabbing is an underactuated
mechanism, because there is not a specific motor to close the fingers; the actuation is done by the same
motor that lifts the whole arm. This solution saves space—where to fit another motor?, reduces cost—
simply, we do not have a fourth motor, and lowers the overall weight. For these reasons, underactuated devices
can be more efficient, simpler, and more reliable than their fully actuated alternatives. Of course, for a motor to
perform more actions, you must devise a clever mechanism.

LEGO itself produced some official models that use an underactuated mechanism to grab

an object first, and then lift it. Among many others, some examples are the yellow submarine
8250/8299 (released in 1997), the barcode truck 8479 (1997), and the alternative model of bull-
dozer 8275 (2007). How can a single actuator decide in which order to perform such different
tasks—to grab and then to lift?

The submarine has a pneumatic hand that grabs and then lifts a barrel. Talking informally,
in the submarine detail shown in Figure 7-2, the grasping is a lighter operation than the lifting.
When the pneumatic piston shortens, it runs into the mechanical opponent force of the spring
(the LEGO shock absorber) and then closes the grabber. Once the grabber is fully closed, the
movement is blocked so the piston can’t help but raise the arm. When the piston lengthens,
the arm is lowered first and then the grabber is opened. Also at this time, the spring that
forces the arm down does the lowering. Something similar happens both in the barcode truck
and in the bulldozer alternative model, but this time, the opposing force is gravity.

CHAPTER 7 ■ MINE SWEEPER 283

Figure 7-2. The underactuated grabber mechanism of the LEGO submarine 8299. The piston first
closes the grabber and then raises it.

Now you know the state-of-the-art in underactuated LEGO grabbers. Among the many
unofficial LEGO robots featuring underactuated grabbers are Ben Williamson’s FetchBot (1998),
Jonathan Knudsen’s Minerva (1999), and Philippe Hurbain’s Barrel Collector Robot (2003), all
based on the RCX system.

The Mine Sweeper becomes part of that unofficial LEGO robots rank—it uses the same
principle as the barcode truck. The arm grabs, lifts, and brings the mine up to the opening of
the hold if the motor is turning forward. It then releases the mine into the hold and comes back
down if the motor’s turning direction is reversed. The easiest and most direct way to under-
stand how this double action is achieved is to build the robot and observe it in action; see the
photos in Figure 7-3.

284 CHAPTER 7 ■ MINE SWEEPER

Figure 7-3. The Mine Sweeper’s grabbing sequence (the frontal scanner is removed)

Now, take a look at Figure 7-4. Here you can see the arm mechanism extracted from the
robot context. At the base of the actions’ switching stands an opposing force. Here the force is
gravity, while in the submarine, the force was produced by the compressed spring.

CHAPTER 7 ■ MINE SWEEPER 285

Figure 7-4. The Mine Sweeper’s grabber arm is extracted from the robot’s context. The sequence of
actions is determined by the force of gravity and by the limited run of the fingers.

In Figure 7-4a, the arm is hanging vertically and the motor starts to move in the direction
specified by the arrow; the light-colored parts are the ones that can move freely. The axle that
transmits the driving torque is not integral with the 7-long white beams that form the arm
frame; the axle rotates freely in the beam holes, and the geartrain brings its movement to the
fingers. The arm is prevented from lifting by the force of gravity, which has no influence on
the fingers’ movement. So, the driving torque flows towards the fingers, because they are com-
pletely free to move. In Figure 7-4b, the fingers are completely closed, and the driving torque is
thus redirected to raise the arm. In Figure 7-4c, the axle has become integral with the arm
frame, because the geartrain is blocked by the closed fingers. The axle can’t help but lift the whole
structure. This sequence a–b–c in Figure 7-4 is matched with the photos a–b–c of Figure 7-3. If
the sequence ends here, the robot has collected an object: reversing the motor direction, the
object will be lowered and released. To store the mines into the hold, the sequence must be
completed, as shown in Figure 7-3, photos d, e, and f.

286 CHAPTER 7 ■ MINE SWEEPER

The dark objects collected are stored into a space found in the depths of the robot.
Considering a standard “mine,” one built with two 2 4 black bricks, the robot can col-
lect more than ten of them. Not bad at all for our purposes!

The Double Scanner

Now, you know all about how the robot collects and stores the objects. But, how does it find
them? The easiest way is to use a Light Sensor to detect dark objects on lighter ground by
measuring the amount of light reflected by the objects. The Light Sensor is equipped with
a red Light Emitting Diode (LED) that illuminates objects. The Light Sensor also has a detector
(a phototransistor) that can measure the light reflected by the surface of the objects: the lighter
the color of the object, the higher the reading returned by the Light Sensor, expressed in percent.

Using a third-party color sensor, you can expand the robot’s abilities. For example, the robot
could pick up bricks of a certain color without storing them (the short sequence of Figure 7-4)
and accumulate them in a pile, as a moving brick sorter. On the other hand, it could work on
uneven colored ground, overcoming the actual dark-and-light recognition restriction.

As anticipated at the beginning of this chapter, the frontal scanner includes two sensors:
the Light Sensor, used to detect the mines, and the ultrasonic radar pointed downwards, to
give the robot the ability to avoid the ravines. The robot interprets as a ravine an Ultrasonic
Sensor reading of more than 35cm. It would not be a big deal if our expensive robot fell down
from a table!

Programming the Mine Sweeper

The program presented gives the robot the ability to clean the ground of the bricks, proceed-
ing straight and scanning the ground as shown in Figure 7-5. The robot does not know about
the already explored area. It simply goes straight, unless a ravine avoidance maneuver changes
its direction. As said before, here we assume that the robot is on a light surface, searching for
dark mines.

CHAPTER 7 ■ MINE SWEEPER 287

Figure 7-5. The path taken to search for mines

How do we obtain that particular searching path? Take a look at the flow chart in
Figure 7-6. The overall working is given by the actions’ sequence: search the mine, estimate
the mine center, grab the mine. The ravine avoidance maneuver is activated only in case of
emergency, during the search.

288 CHAPTER 7 ■ MINE SWEEPER

Figure 7-6. The flow chart of the Mine Sweeper program

CHAPTER 7 ■ MINE SWEEPER 289

The ground scanning is divided into three steps. First, the robot spins in place clockwise,
until a ravine or a mine is detected, or a limited span has been covered (phase 1); then, the
robot spins counterclockwise to reach the symmetric position, under the same conditions as
earlier (phase 2); finally, it spins back to its original heading (phase 3) and advances a bit. The
waiting for the three events that can stop the spinning (ravine detection, mine detection, and
angle limit) is represented inside the subloop inserted between the “search phase N” blocks,
whose detailed structure is shown in Figure 7-6, inside the gray rectangle.

If a ravine is detected when the Ultrasonic Sensor measures a big distance, the searching
is suspended, the robot spins to change its heading, and then the searching is resumed. If
a mine is detected, the search loop is interrupted, the mine size is measured to find its center
of mass, and then it is collected. After the mine is stored inside the robot’s hold, the searching
loop restarts from the beginning (phase 1).

Now you are ready to be introduced to the NXC program that implements the working
just described. The program is divided into many subsections, labeled by commented head-
ings; the various parts will be discussed separately. The program for the Mine Sweeper is in
Listing 7-1.

Listing 7-1. The Complete Mine Sweeper Program

// NXT ports aliases

#define LIGHT IN_1
#define USONIC IN_4
#define WHEELS OUT_AC
#define GRABBER OUT_B
#define LEFT_WHEEL OUT_A
#define RIGHT_WHEEL OUT_C

#define SEARCH_WIDTH 100
#define SEARCH_SPEED 25
#define SEARCH_TIMEOUT 2000
#define CW 1 // clockwise
#define CCW -1 // counterclockwise

// detection events definitions
#define NONE 0
#define MINE_EV 1
#define RAVINE_EV 2
#define TIMEOUT_EV 3
#define EDGE_EV 4

// mine centering algorithm definitions
#define TOP 1
#define BOTTOM -1
#define RIGHT 1
#define LEFT -1
#define APPROACHING 1
#define DISMISSING 0

290 CHAPTER 7 ■ MINE SWEEPER

// macros
#define RAVINE_DETECTED (SensorUS(USONIC)>35)
#define MINE_DETECTED (Sensor(LIGHT)<threshold-8)
#define MINE_LOST (Sensor(LIGHT)>threshold-4)

// global variables
int threshold;
bool found;

//===//
// ROBOT INITIALIZATION //
//===//
sub GrabberZeroPosition()
{

// bring the grabber to its zero position,
// with the arm down and the grabber opened.
int t;
t = MotorRotationCount(GRABBER);
// run the grabber motor
OnRev(GRABBER,40);
Wait(400);
// while it is not stalled
while(abs(t-MotorRotationCount(GRABBER))>14)
{
t = MotorRotationCount(GRABBER);
Wait(50);

}
// and stop it
Off(GRABBER);
Wait(50);
Float(GRABBER);

}

sub MineSweeper_init()
{

// initialize sensor ports
SetSensorLight(LIGHT);
SetSensorLowspeed(USONIC);
// measure the ground color:
// the robot must be started with no mine
// under the detector
threshold = Sensor(LIGHT);
// show the threshold, given by the light color
// of the ground, according to which dark mines are detected
TextOut(5,LCD_LINE1,"Threshold: ");
NumOut(70,LCD_LINE1,threshold);
// close the grabber a bit to avoid forcing
// the geartrain

CHAPTER 7 ■ MINE SWEEPER 291

RotateMotorExPID(GRABBER,60,180,0,false,false,20,20,50);
// and then reset its position
GrabberZeroPosition();
TextOut(5,LCD_LINE1," ");

}

//===//
// SUBROUTINES FOR SPINNING //
//===//
sub AvoidRavine()
{

// avoid the ravine by spinning,
// to change the robot heading
// to the opposite direction
Off(WHEELS);
RotateMotorEx(WHEELS,80,550,-100,true,true);
OffEx(WHEELS,RESET_ALL);

}

sub Spin(short dir)
{

// this is called during the search phases
// to start the robot spinning
// the parameter dir indicates the
// spinning direction (CW or CCW)
OnFwdReg(LEFT_WHEEL, sign(dir)*SEARCH_SPEED, OUT_REGMODE_SPEED);
OnFwdReg(RIGHT_WHEEL, -sign(dir)*SEARCH_SPEED, OUT_REGMODE_SPEED);
Wait(50);

}

//===//
// SEARCHING PHASES //
//===//
bool SearchPhase (byte phase)
{

// the research is divided into 3 phases:
// 1 - the robot scans the ground spinning clockwise
// 2 - the robot scans the ground spinning counterclockwise
// 3 - the robot spins back to get the initial heading
// this function returns true if the mine has been found,
// and false otherwise
byte detection;
bool resu lt ;
short span;

detection = NONE;
result = false ;

292 CHAPTER 7 ■ MINE SWEEPER

// start spinning according to the search phase
if (phase == 1)
{

Spin(CW);
span = SEARCH_WIDTH;

}
if (phase == 2)
{

Spin(CCW);
span = 2*SEARCH_WIDTH;

}
if (phase == 3)
{

Spin(CW);
span = SEARCH_WIDTH;

}
// the following loop is interrupted when
// a ravine is detected
// a mine is found
// the robot has covered the current search width
while (detection == NONE)
{
if (RAVINE_DETECTED)
{
// if a ravine is detected, avoid it
// and break out of this loop

detection = RAVINE_EV;
AvoidRavine();

}
else if (MINE_DETECTED)
{
// if a mine is detected, set result to true
// and break out of this loop

detection = MINE_EV;
result = true;

}
else if (abs(MotorTachoCount(LEFT_WHEEL))>span)
{
// if the span has been covered,
// break out of this loop

detection = TIMEOUT_EV;
}

}

CHAPTER 7 ■ MINE SWEEPER 293

OffEx(WHEELS, RESET_NONE);

return resu lt;

}

//===//
// SEARCH THE MINE //
//===//
sub SearchMine()
{

byte detection;
// initialize "mine found" flag to false
found = false ;
TextOut(0,LCD_LINE5,"SEARCHING MINE ");
// repeat the procedure until a mine is found
until (found)
{

// phase 1 : search the mine spinning clockwise
found = SearchPhase(1);

if (!found) // do this if the mine has not been found yet
{

// phase 2 : search the mine spinning counterclockwise
found = SearchPhase(2);

}

if (!found) // do this if the mine has not been found yet
{

// phase 3 : spin back to center
found = SearchPhase(3);

}

if (!found) // do this if the mine has not been found yet
{

// advance a bit
OffEx(WHEELS, RESET_ALL);
RotateMotorEx(WHEELS,50,40,0,true,true);

}
}

}

294 CHAPTER 7 ■ MINE SWEEPER

//===//
// DETECT MINE EDGE, MEASURE MINE LENGTH //
//===//

/*

top

|O)O)|. ^
|O)O)|| right |

left |O)O)|| length
|O)O)|| |
____\| v

bottom

<-width->
*/

byte WaitEdge(byte mode)
{

// wait for the sensor reading to change
byte event = NONE;
unsigned long time = CurrentTick();

while(event == NONE)
{
if ((CurrentTick()-time) > SEARCH_TIMEOUT)
{

event = TIMEOUT_EV;
}
else if (mode == DISMISSING)
{
// detect the transition from black to white
if (MINE_LOST) event = EDGE_EV;

}
else if (mode == APPROACHING)
{
// detect the transition from white to black
if (MINE_DETECTED) event = EDGE_EV;

}
}

return event;

}

CHAPTER 7 ■ MINE SWEEPER 295

int FindMineLength(short edge)
{

// this function returns the left wheel rotation count (angle)
// used to measure the mine length as the
// distance between top and bottom edge
int y;
byte ev;
// save start position
y = MotorRotationCount(LEFT_WHEEL);

OnFwdSync(WHEELS,sign(edge)*30,0);

if (edge == BOTTOM)
{

// ignore the first edge found (the top one)
WaitEdge(APPROACHING);

}

// wait for mine dismissing with timeout constraint
ev = WaitEdge(DISMISSING);
Off(WHEELS);
if (ev == EDGE_EV)
{

// if the edge was found, save position
y = MotorRotationCount(LEFT_WHEEL);

}
return y;

}

//===//
// CENTER THE MINE //
//===//
sub CenterMine()
{

int length;
// this file should be present in the NXT memory
// if you have downloaded the latest complete firmware
PlayFile ("! Attention.rso");
TextOut(0,LCD_LINE5,"CENTERING MINE ");

// find top and top and bottom edges of the mine
// to measure its length
TextOut(0,LCD_LINE6," TOP EDGE ");
length = FindMineLength(TOP);
TextOut(0,LCD_LINE6," BOTTOM EDGE ");
length = length - FindMineLength(BOTTOM);
// and then center the mine

296 CHAPTER 7 ■ MINE SWEEPER

RotateMotor(WHEELS,40,length/2);
//
// HERE YOU CAN ADD A SIMILAR PROCEDURE TO
// MEASURE THE MINE WIDTH
//
// clear line 6 of the screen
TextOut(0,LCD_LINE6," ");

}

//===//
// COLLECT THE MINE //
//===//
sub CollectMine()
{

TextOut(0,LCD_LINE5,"COLLECTING MINE ");
// move forward to get the mine between the claws
RotateMotorEx(WHEELS, 50, 115, 0, true, t rue) ;
ResetAllTachoCounts(WHEELS);
StopSound();
// grab the mine and lift it
RotateMotorPID(GRABBER,90,1460,30,30,60);
// release the mine into the hold, and lower the arm again
RotateMotorExPID(GRABBER,-100,1000,0,false,false,30,20,50);
GrabberZeroPosition();

}

task main ()
{

// call the initialization subroutine
MineSweeper_init();

// execute the sequence of actions forever
// using the preceding subroutines
while (true)
{

SearchMine();
CenterMine();
CollectMine();

}
}

The program starts, as always, by executing the main task, which is the only task running

in this program. In main, the MineSweeper_init() subroutine is called to perform robot initial-
ization. After the sensor ports are configured to read data from the Light Sensor and the
Ultrasonic Sensor, the color of the ground is acquired to set the threshold that will be used in
the rest of the program to distinguish the dark mines on the ground. Then, the grabber arm is
brought into its zero position by the GrabberZeroPosition() subroutine, using the useful motor
stall detection algorithm you have seen throughout the book.

CHAPTER 7 ■ MINE SWEEPER 297

After initialization, the program flow comes back to the main task, where a perpetual loop
begins: here inside the mine, searching, centering, and collecting procedures are called, one
after another. You may begin to compare these parts of the code with the corresponding abstract
blocks of the flow chart in Figure 7-6.

Let’s dive into the detailed description of these three procedures, proceeding in order.
The SearchMine() subroutine contains a loop that sequentially activates phases 1, 2, and 3 of the
search, calling the SearchPhase(byte phase) function, passing the phase number as an argu-
ment. The program flow breaks out the SearchMine() loop only if a mine is found during one
of those phases. Also, notice that the SearchPhase function calls after the first are performed
only if the mine has not already been found (and the found variable is false). In fact, when the
mine is right under the sensor, the robot must not continue with the successive scanning phases:
the SearchMine() subroutine returns, and the main task can call the other subroutines.

The SearchPhase function implements the subloops shown in gray in Figure 7-6, returning
a Boolean value that is true if a mine has been detected during the scan, false otherwise. Inside
this function, the ravine avoidance maneuver can be eventually triggered. According to the
phase argument passed to this function, the robot spins clockwise or counterclockwise, and
the span covered is determined by the value of the span variable. Every time that the motors
are started, their Tacho Count register is reset. So, the condition abs(MotorTachoCount(LEFT_
WHEEL))>span allows you to check if the left wheel has turned by the number of degrees spec-
ified by the span variable.

■Caution The motors’ Tacho Count registers are always reset by the standard functions such as OnFwd,
OnRev, Off, and other functions, unless you use their counterparts with the Ex postfix, as OnFwdRegEx,
OnFwdSyncEx, OffEx, and so on. Among the arguments accepted by these extended functions, you can
specify which motor-related registers you want to reset, or none of them. For details about all the motors’
control registers, consult the NXC Programming Guide.

The Spin(short dir) subroutine simply runs the motors in opposite directions, calling

the OnFwdReg NXC function. Using this function, the NXT firmware turns the motors on and
regulates their speed precisely.

Once a mine is found, the program flow goes back to main task. Here, the CenterMine() and
CollectMine() subroutines are called sequentially. The CenterMine() subroutine attempts to
find the mine’s center of mass, measuring the mine’s length. The program is left open to the
development of a more refined centering procedure; for example, also measuring the mine’s
width. However, given that the size of the collectable objects is almost known, the grabber
rarely fails in collecting them, even if they are not precisely aligned with respect to the robot’s
direction.

You measure the mine length by calling the FindMineLength(short edge) function, passing
as an argument the edge constant values TOP and BOTTOM. This function returns the left wheel’s
motor rotation count at the moment of the edge detection. The information about the other
wheel angle is not important, because the motors are running synchronized. You can determine
the center of the mine by subtracting the value returned by the second call from the wheel angle
that’s returned by the first FindMineLength call, and dividing the result by 2. The CenterMine sub-
routine calculates and uses this value to move the robot forward. Use Figure 7-7 as a reference.

298 CHAPTER 7 ■ MINE SWEEPER

Figure 7-7. This scheme shows the phases to align the mine before collecting it.

Once the mine is detected (a), its precise position under the sensor is unknown; the only
known thing is that the Light Sensor is reading a value well below the threshold value. The
function FindMineLength saves the actual left wheel rotation count and, receiving the constant
TOP as an argument, moves the robot forward until a transition from black to white occurs
(b: top edge). This waiting is done by calling the WaitEdge(byte mode) function: the argument mode
allows the caller to specify WaitEdge to wait for a black-to-white transition, or for a white-to-black
transition, implemented by the two macros MINE_LOST and MINE_DETECTED, respectively. The
first waiting mode is associated with the constant DISMISSING, meaning that you want to wait
for the mine to go away from the sensor halo; the second mode is given the name APPROACHING,
meaning that you want to wait for the mine to approach, until it comes under the sensor halo.
To avoid unpredictable color measurement problems making this waiting become infinite,
you can use a timeout mechanism. The timeout is detected using the same technique you
have encountered in Chapter 6. The constants and macros the WaitEdge function uses are
summarized in Table 7-1.

Table 7-1. Constants Used in the Edge Detection Functions

Waiting Mode Macro Used Expanded Code Color Transition

APPROACHING MINE_DETECTED Sensor(LIGHT)<threshold-8 White to black

DISMISSING MINE_LOST Sensor(LIGHT)>threshold-4 Black to white

After an edge is detected or the timeout has elapsed, the WaitEdge function returns a value

describing which of the two events has occurred. If the edge was found before the timeout,
FindMineLength returns the actual left wheel rotation count, otherwise it returns the value
saved before the edge detection.

Once FindMineLength(TOP) returns, the CenterMine() subroutine calls FindMineLength(BOTTOM),
to detect the bottom edge (c). The only difference, with respect to before, is that receiving

CHAPTER 7 ■ MINE SWEEPER 299

BOTTOM as an argument, FindMineLength() first waits for a transition from white to black—
WaitEdge(APPROACHING) —and then for another transition from black to white—WaitEdge
(DISMISSING). This is necessary, because the top edge detection implies that the dark mine is
not under the sensor anymore: the robot was going forward, and when it stopped after the top
edge detection, it surpassed the mine a bit. So, when going backwards, the robot must wait for
the mine to be detected again in correspondence with the top edge, and then wait for the bottom
edge to be detected. Once the bottom edge is found, in correspondence with a black-to-white
transition, the second measurement of the wheel angle is taken.

The CenterMine() subroutine subtracts the two measurements, halves the result, and
moves the robot forward (d). The mine should be now under the sensor. The CenterMine()
subroutine returns, and the next subroutine called by main is the one to grab and store the
mine.

The distance from the sensor to the grabber is fixed, determined by the structure of the
robot. So, the CollectMine() subroutine makes the robot advance by the amount of space
needed to bring the mine between the grabber claws; the grabber motor is rotated by a precise
number of degrees, and our good ol’ underactuated mechanism does the rest! The mine should
be released correctly into the hold opening, shaped to help the mines to fall down, under the
central motor. Note that if the mine was placed in an unfavorable way on the ground, an aspect
of the whole procedure could go wrong: the mine could not be picked up at all, or could become
stuck with the frontal scanner during the lifting, or could remain in the hold opening instead
of falling down into the hold.

After the collection, the grabber motor is reversed, to bring the arm back down; the
appropriate subroutine brings the grabber into its zero position.

■Note RotateMotorEx and RotateMotorExPID are extended versions of the basic RotateMotor NXC

function, whose arguments are motor Port, Power, and Angle. With RotateMotorEx, you can rotate two
motors together using the Sync feature, and tell the motor to come to a stop after having turned the specified
number of degrees. The other function RotateMotorExPID rotates the motor like the preceding functions,
but also allows you to change the internal Proportional, Derivative, and Integrative gains of the PID controller
that is run by the NXT firmware. The Proportional contribution gives promptness to the motor response, the

Integrative contribution eliminates the steady state error (deviation from the desired position after the motor
is stopped), while the Derivative contribution compensates for the oscillations generated by the Integrative
and Proportional combined contribution, to reach the steady state faster. Consider, however, that the PID
control is an argument well worth dedicating entire books to. For details about those NXC functions, check
the Programming Guide.

Once the mine has been collected, the loop inside the main task restarts from the beginning,

searching for the next mine on the robot’s path.

