
 
 
 

■■■  

NXT AT-ST 

 
 
 
 

 

Also known as “chicken walker,” because of its shape and walking motion, the All Terrain 
Scout Transport (AT-ST) is a bipedal war craft employed by the Galactic Imperial Forces in the 
Star Wars saga. 

In this chapter, you’ll build the AT-ST biped shown in Figure 4-1, guided by detailed build- 
ing instructions. You’ll program it to walk around, and by the end of this chapter, you’ll have at 
your command one of the most famous battle robots in the history of cinema. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4-1. The impressive-looking NXT AT-ST 
 

 
59 



60 CHAPTER 4 ■ NXT AT-ST 

 

Design Thoughts 

AT-STs were seen in the Star Wars movies in the Battle of Hoth in The Empire Strikes Back and 
the Battle of Endor in Return of the Jedi. The AT-ST has chin-mounted double laser cannons, 
a concussion grenade launcher on the right side of its head, and a blaster cannon on the left. 
The bipedal propulsion system is the strength of the Star Wars AT-ST, allowing it to move its 
weaponry across uneven terrain that a wheeled unit would not be able to traverse. This craft 
can carry one pilot and one gunner, with a maximum speed of 90km/h. Even though it’s not as 
imposing as its larger All Terrain Armored Transport (AT-AT) quadruped walker cousin, the 
AT-ST serves as a sort of robotic cavalry to the Imperial side on the battlefields of the Star Wars 
films. 

The NXT AT-ST walker shown in Figures 4-1 and 4-2 is mainly built with NXT retail set 
parts, but includes a few extra parts, needed just to improve the design. These additional parts 
aren’t structural, so don’t worry if you don’t have them in your LEGO  spare reserves. You’ll be 
guided in how to build the alternative retail-set-only version in the building section of this 
chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-2. Another view of the NXT AT-ST 



CHAPTER 4 ■ NXT AT-ST 61 
 

I  tried hard to reproduce all the AT-ST features in a well-proportioned way, from the partic- 

ular leg shape to the head profile. As you might guess, the robot you’re going to build cannot 
move across uneven terrain; on the contrary, the surface to walk on must be smooth and plain. 
Also, the robot cannot carry humans and won’t hurt anybody, because the weapons have been 
replaced by the Sound Sensor and the Ultrasonic Sensor. 

This model wasn’t designed in a day! It was difficult to get to the final shape. In Figure 4-3, 
you can see the AT-ST in one of its early stages of development. The legs were not at all similar 
to the final ones, and the head was disproportionate. On both feet, I used a Touch Sensor to 
know which side the robot was leaning on; this feature proved to be useless in the final robot 
version due to a new, timed approach. Also, notice the tendon made with the ball joint steer- 
ing link that prevents the hip from bending (as in Quasimodo in Chapter 2). Although a bit 
raw, this old prototype already featured all the key ideas that brought me to the final AT-ST 
presented here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4-3. An early prototype of the NXT AT-ST 



62 CHAPTER 4 ■ NXT AT-ST 
 
 

This LEGO MINDSTORMS biped perfectly fits in the jerky COG shifting category introduced 
in Chapter 1. It uses only two motors to accomplish the needed movements, while other robots 
fitting in this category, which you might have seen on the Web, generally use three motors. Here, 
one motor shifts the weight (mostly concentrated in the head) by turning the neck turntable, 
while the other motor rotates the legs in sync, as shown in the plan back in Figure 1-4b. Because 
these movements are done one after another, the gait of this biped is jerky. 

Using only two motors allowed me to lighten the whole structure a bit, so that the legs of 
the AT-ST, accurately reproduced in all their slimness, could support the upper body weight. 
You can understand what I mean here by “accurately” by looking at Figure 1-5c in Chapter 1. 
The AT-ST I made with the RCX had squat, boxy legs, not at all similar to the real leg shape or 
the elegance of the legs of the actual NXT version. 

I  tried to keep the feet as small as possible, always bearing in mind, however, that small 
feet yield poor stability. On the internal side of both feet, I placed two wedges that are the only 
touch point of the feet when the head is perfectly centered. When the head turns to the side, 
only one of the feet will touch the ground with the wedges and with the external rubber edge. 
If the feet were totally flat (entirely touching the ground), the AT-ST would have needed another 
mechanism to bend the ankles. With this solution, the legs can be made strong and rigid, 
because they have no moving joints. The robot walks straight by shifting the head weight aside 
and suddenly stepping forward, when the loaded foot is touching the ground with wedges and 
rubber elements, and the other is off the ground. 

Turning is a little more complicated, and the performance might vary according to the 
nature of the surface the robot is walking on. Carpets are the worst surface you can imagine, 
while flat, smooth surfaces such as tables or parquet are perfect. For example, let me explain 
how the robot turns right. First, it rotates the legs while they are both on the ground (the head 
is centered), so that the right foot is in front of the left one. Then, the weight is shifted to the right, 
and the left foot is suddenly brought forward to get aligned with the right foot again. Repeating 
this many times, the AT-ST can turn right; and, doing the opposite, it can turn left. This can 
sound complicated, but don’t worry if you don’t have a clear understanding of what is going 
on here. Once you see the robot walking, driven by the program you’ll learn later, all the con- 
fusion will melt away. 

The head contains all the sensors: the side weapons are the Sound Sensor and the 
Ultrasonic Sensor. A Touch Sensor is used to detect if the head has reached its turning limits; 
this sensor is hidden (not so well, actually!) under the AT-ST face. 

 

Programming the AT-ST 

The program discussed in this section gives your robot the ability to walk everywhere, by 
avoiding obstacles. Download the sound files provided, together with the source code, to the 
NXT using BricxCC, so that the NXT can play them. 
 
 

■Tip You can find the files in the Source Code/Download area on the Apress web site at http://www. 
apress.com. Use Appendix A as a guide for downloading files to the NXT. 



CHAPTER 4 ■ NXT AT-ST 63 
 
 

When you start the AT-ST program, it aligns the legs and the head in the center. Then the 
AT-ST starts walking straight as described earlier, until it sees an obstacle. At this point, it pro- 
duces a twin-laser sound, it chooses a random turning direction, and starts steering. It should 
turn changing its direction by about 90 degrees, although this depends on the slipperiness of 
the surface it is walking on. Then it starts walking straight, as before. 

“Again? Another walker with obstacle avoidance?” you say. Well, again: having well-performing 
hardware doesn’t mean that making it work well is easy. Therefore, here I’ll focus attention on the 
routines that manage the mechanical parts to allow the robot to walk correctly. This is not at all 
a trivial issue, especially concerning the right timing of the motor movements. Also, the legs and 
the head orientation are regulated by FSMs. So, this is the perfect occasion to see in practice what 
you read about in the previous chapter. Once you have this core software ready to work, you can 
adapt the program to do anything you want—even control the robot remotely. 

As with any NXC program, the declaration of all the constants and macros used in the 
program appears at the top of the code, shown in Listing 4-1. 
 
 

■Note A macro is an operation defined inside a #define directive. Before the NXC compiler starts to 
translate your code into instructions readable by the NXT processor, the NXC preprocessor expands the 
macro as follows. If the macro has no arguments, such as #define NEAR 20, the preprocessor will replace 
NEAR with the constant 20 every time it encounters the word NEAR. If the macro has arguments, such as 
#define TWO_TIMES(x) 2*(x), then the argument x will be replaced with the argument inside the brackets 
of a call, such as y = TWO_TIMES(3). So, the preceding will be expanded into y = 2*(3), storing the result 

6 inside the variable y. Notice that you could also call y = TWO_TIMES(3+4), which would be expanded into 
y = 2*(3+4), yielding 14. If you omitted the parentheses in the macro, the expression would be wrongly 
translated as y = 2*3+4, yielding 10 as a wrong result. Writing macros in all capital letters isn’t strictly required, 
but it is a useful convention. When you see a word with all capital letters, it is probably defined as a macro. 
 
 

Listing 4-1. The AT-ST Program Definitions 

#define TOUCH IN_3 //short cable 

#define SONAR IN_1 //mid cable 
#define MIC IN_4 //mid_cable 
#define LEGS OUT_C 
#define HEAD OUT_A 
 
#define NEAR 20 
#define LEFT 0 
#define CENTER 1 
#define RIGHT 2 
#define TURN_RIGHT 1 
#define TURN_LEFT -1 
#define WALK 0 
#define STOP 5 
 
#define OBSTACLE (SensorUS(SONAR)<NEAR)



64 CHAPTER 4 ■ NXT AT-ST 
 
 

The main task code is shown in Listing 4-2. 
 

Listing 4-2. The main Task Code of the AT-ST Program, After Declaring Global Variables 

// global variables 

int weightState, legsState, runState; 
[...] 
task main () 
{ 

ATST_init(); 
int action;  
 
while (true) { 
 
if(OBSTACLE) 

runState = 1-2*(Random(2)); // 1, -1 
else 

runState = WALK; 
 

switch(runState) { 
case TURN_RIGHT: 

TurnRight(9); 
break; 

case TURN_LEFT: 
TurnLeft(9);  
break; 

case WALK: 
GoStraight(); 
break; 

} 
CenterHead(); 
CenterLegs(); 

} 
} 

Outside every task, function, or subroutine, you see three global variables declared; every 
function in the program can access these variables. By contrast, a variable declared inside 
a function (for example the action variable inside the main task) is called local and can be used 
only by the function inside which it is declared. If any other function tries to use that local 
variable inside its body, it would cause a compiler error. In fact, the compiler would complain 
about the presence of an Undefined Ident i f ier action, because it would not know what 
action is. 

At the start, the ATST_init() function is called to perform hardware initialization; in this 
case, to tell the NXT where each sensor is attached and to reset the head and the legs to their 
zero position. These operations are not trivial, as you will see later. Next, the program enters 
an infinite loop, as was the case for Quasimodo (see Chapter 2). Inside this loop, the whole 
basic AT-ST behavior is expressed. Let’s analyze the code by breaking it into smaller chunks: 



CHAPTER 4 ■ NXT AT-ST 65 
 
 

if(OBSTACLE) 
runState = 1-2*(Random(2)); // 1, -1 

else 
runState = WALK; 

With if(OBSTACLE), we’re checking if the Ultrasonic Sensor is detecting an obstacle. Well, 
this could be clear already, but how is it done? OBSTACLE is a macro defined previously as follows: 

#define OBSTACLE (SensorUS(SONAR)<NEAR) 

This is a common handy way to have a piece of code replaced by an easier-to-remember 

macro. Every time the compiler meets this constant OBSTACLE later in the program, it will replace 
it completely with (SensorUS(SONAR)<NEAR). 
 
 

■Note SONAR is another alias that stands for IN_1: the input port constant to which the Ultrasonic Sensor 

is attached. 
 
 

So, if(OBSTACLE) becomes if(SensorUS(SONAR)<NEAR) for the compiler, after the preproces- 
sor has finished its work. If the Ultrasonic Sensor reading is less than NEAR (another constant 
with the value of 20), then the runState variable will be assigned a random value that can be 
1 or -1 (corresponding to the right or left direction). Otherwise, it will be assigned the con- 
stant value 0 (WALK). The function Random(2) returns a random value that can be 0 or 1. So, 
runState = 1-2*(Random(2)) assigns the runState variable a value that can be 1-2*(0) = 1 or 
1-2*(1) = -1. 
 
 

■Tip The Random(n) function returns a random number between 0 and n-1. 

 
 

The switch statement then uses the runState variable to decide what to do: to turn right 
or left, whether runState has the TURN_RIGHT or TURN_LEFT value, or to go straight if it corresponds 
to WALK. In the turning functions, the number inside the brackets indicates how many times 
the turning movement pattern must be repeated. If the AT-ST decides to walk straight, it will 
stop only when it detects an object. After the walk, in whichever direction, the CenterWeight() 
and CenterLegs() subroutines realign the head and legs. 

Now that you know all about the basic behavior of the AT-ST, it’s time to see what’s inside 
the subroutines to realign the head and the legs. Let’s dissect them by looking at Listing 4-3, 
for the leg-centering subroutine. 
 

Listing 4-3. The CenterLegs Subroutine 

sub CenterLegs() 
{ 

int t; 
t = MotorRotationCount(LEGS); //save actual position 
OnFwd(LEGS,65); 



66 CHAPTER 4 ■ NXT AT-ST 
 
 

Wait(100); 
// if position does not change more than specified angle in specified time 
while( abs(t-MotorRotationCount(LEGS))>10 ) 
{ 
t = MotorRotationCount(LEGS); 
Wait(100); 

} 
Off(LEGS); 
RotateMotor(LEGS,50,-120); 
Wait(200); 
legsState = CENTER; 

} 

The legs have no evident sensor to let the NXT know which direction they are oriented in. 
Don’t forget, we aren’t working with mere motors. The NXT motors contain optical encoders to 
measure the shaft’s relative angle. Thus, all the sensors we need are already inside the motors. 
The motor’s actual angle is saved into the variable t and the motor is started to orient the legs 
to the left. How can you know if the legs have reached their limit position? Here, I adopted 
a trick to measure the motor shaft’s speed: after the motor has started, the NXT continuously 
checks if the motor shaft is rotating to a minimum number of degrees (10) in a certain period 
of time (100ms). The small angle and the time interval were chosen appropriately for the appli- 
cation. What I said in words can be translated into this code: 

while( abs(t-MotorRotationCount(LEGS))>10 ) 
{ 
t = MotorRotationCount(LEGS); //update starting angle 
Wait(100); //wait 100ms 

} 

While the angle of the shaft varies more than 10 degrees in the time interval of 100ms, the 
program doesn’t stop the motor. However, if the motor cannot accomplish this angle in this 
little bit of time, it means that the legs are stopped by something and the motor is stalling, so 
it is turned off. The shaft speed is measured every 100ms as the difference between the angle 
stored in the variable t and the angle measured time by time with the MotorRotationCount() 
function. 
 
 

■Note Measuring an increment of a shaft angle inside a time window means measuring the shaft’s speed; 
in fact <speed> = <angle increment>/<time>, s = a/t. This effective technique is frequently used in 
robotics but has no common name. Let me give it a pompous name: servomotors automagic built-in limit 
switch! 
 
 

Now that the legs are posed in a known direction, you can bring them to their center posi- 

tion with RotateMotor(LEGS,50,-120), where 120 is the measured number of degrees to rotate 
the legs from the left direction to the center. The legs are now realigned! Let’s see how to center 
the head, where we have a Touch Sensor, by looking at Listing 4-4. 



CHAPTER 4 ■ NXT AT-ST 67 
 
 

Listing 4-4. The Subroutine to Center the Head 

sub CenterHead () 
{ 

#define CNT_SPEED 50 
OnFwd(HEAD,CNT_SPEED); //bring the head to the right 
Wait(400); 
Off(HEAD); 
 
if (Sensor(TOUCH)) //head was already at right or center 
{ 

OnRev(HEAD,CNT_SPEED); 
while (Sensor(TOUCH)); 
Off(HEAD); 
RotateMotor(HEAD,CNT_SPEED,-30); 

} 
 
else if (!Sensor(touch)) //head was already at left 
{ 

OnRev(HEAD,CNT_SPEED); 
until (Sensor(TOUCH)); 
Off(HEAD); 
RotateMotor(HEAD,CNT_SPEED,60); 

} 
 

weightState = CENTER; 
} 

Reading the Touch Sensor only tells you if the head is turned completely to the right or to 

the left (sensor closed), but gives you no information about the actual head direction. This is 
not at all a subtle difference; we only know if the head is turned, but not in which direction! 
Here, only clever programming can get us out of the trouble. Read on carefully to see how, 
remembering Listing 4-4. 

At the beginning, the head is rotated to the right by the motor, without checking the sen- 
sor yet. Only after that can the program check whether the Touch Sensor is closed or not. If it 
is closed, that means the head is now at the right (the initial turning brought it here). In this 
case, the motor turns the head to the left until the sensor opens again; it stops and turns a lit- 
tle more to compensate for the remaining constant offset to get to the exact center. 

If the Touch Sensor is open after the first “blind” turn, we assume (being right!) that the head 
was initially pointed left. In this case, the motor turns the head to the left until the sensor is closed 
and the head has reached the full left side, and stops. The last RotateMotor(HEAD,CNT_SPEED,60) 
brings the head to the center from the leftmost known position. Whew, we did it! 

Only the functions to make the AT-ST step and lean aside remain to be covered. (“Only” 
is just a manner of speaking, of course.) These apparently simple routines are worth a lot of 
attention and explanation. The subroutine to rotate the head implements an FSM using the 
if-then-else statements, while the other subroutine that moves the legs adopts a decision 
table (explained in Chapter 3) to make the code cleaner and more elegant. Let’s deal with the 
first subroutine right now. Take a look at Listing 4-5, which enables the AT-ST to lean aside, 
turning the head left and right.



68 CHAPTER 4 ■ NXT AT-ST 
 
 
Listing 4-5. The Code to Lean the Head 

sub Lean ( in t newState) 
{ 
if ( weightState != newState ) 
{ 
 
if (weightState==CENTER) //head is at center 
{ 
if (newState==RIGHT) OnFwd (HEAD,LEAN_SPEED); 
if (newState==LEFT) OnRev (HEAD,LEAN_SPEED); 
until (Sensor(TOUCH)); 
Off (HEAD); 

} 
 
if (weightState==LEFT) //head is at left 
{ 
if (newState==CENTER) 
{ 

OnFwd(HEAD,LEAN_SPEED); 
while (Sensor(TOUCH)); 
Off(HEAD); 
RotateMotor(HEAD,LEAN_SPEED,40); 

} 
if (newState==RIGHT) 
{ 

OnFwd(HEAD,LEAN_SPEED); 
while (Sensor(TOUCH)); 
until (Sensor(TOUCH)); 
Off(HEAD); 

} 
} 
 
if (weightState==RIGHT) //head is at right 
{ 
if (newState==CENTER) 
{ 

OnRev(HEAD,LEAN_SPEED); 
while (Sensor(touch)); 
Off(HEAD); 
RotateMotor(HEAD,LEAN_SPEED,-30); 

} 



CHAPTER 4 ■ NXT AT-ST 69 
 
 

if (newState==LEFT) 
{ 

OnRev(HEAD,LEAN_SPEED); 
while (Sensor(TOUCH)); 
until (Sensor(TOUCH)); 
Off(HEAD); 

} 
} 
weightState = newState; 

} 
} 

The new desired position for the head is passed on as the newState argument to the Lean 
subroutine. If newState is equal to weightState (the state variable that keeps track of the head 
position), nothing has to be done because the head is already in the desired position. If not 
equal, different actions are performed according to the new state passed to the subroutine. To 
get the center from a known side, the motor turns until the Touch Sensor is cleared. To lean 
aside (say to the left), the program checks if the head is actually right or centered. If it is to the 
right, the Touch Sensor is pressed and the motor turns until the sensor is cleared, and then is 
pressed again. You use a similar procedure to get to the right from the left. 
 
 

■Tip Using the weightState variable (and state variables in general) allows you to know the direction of 
the head without reading any sensor, by reading (and trusting) this variable instead. 
 
 

Listing 4-6 shows the second subroutine to make your imposing AT-ST take steps. 

 

Listing 4-6. Making the AT-ST Take Steps 

sub Step(int newState, bool slow) 
{ 

int speed = 65; 
if(newState!=legsState) 
{ 
if (slow) speed = 45; 
RotateMotorPID(LEGS,speed,legsAngles[newState+3*legsState],30,20,80); 
legsState = newState; 

} 
}



70 CHAPTER 4 ■ NXT AT-ST 
 

 

■Note RotateMotorPID is an advanced version of the NXC function RotateMotor. The basic function is 

the same, except you can specify three additional parameters: P, I, and D. Leave them for now; we’ll come 
back to them briefly in Chapter 7. 
 
 

Here you can see a good example of implementing a decision table: a technique associ- 
ated with FSMs, which you saw in theory in Chapter 3. In fact, the Step subroutine accepts as 
an argument the variable newState, which is used together with legsState (the variable that 
keeps track of the legs’ state) to index the table legsAngles. Inside this table you find the appro- 
priate angles to rotate legs from legsState to newState. A table can be viewed as an array with 
two dimensions—in other words, as a matrix. In NXC, you can declare multidimensional arrays. 
However, working with them is tricky and not worth the effort for this simple application, so it is 
preferable to implement the decision table as a single dimensional array. The legsAngles deci- 
sion table and corresponding array declaration are shown in Table 4-1 and Listing 4-7. 
 

Table 4-1. legsAngles Decision Table with the Angles to Move the Legs 

newState LEFT CENTER RIGHT 

oldState 

LEFT 0 -S -2*S 

CENTER S 0 -S 

RIGHT 2*S S 0 
 

Listing 4-7. The Array Implementing Decision Table 4-1 

const int legsAngles[] = { 0 , -STEP_TURN, -2*STEP_TURN, 
STEP_TURN, 0 , -STEP_TURN, 

2*STEP_TURN, STEP_TURN, 0 }; 

For example, if you want to go from LEFT (which oldState is equal to) to RIGHT (passed as 

the newState argument), you’d use this code: 

RotateMotorPID(LEGS,speed,legsAngles[newState+3*legsState],30,20,80); 



CHAPTER 4 ■ NXT AT-ST 71 
 
 

The preceding code rotates the legs’ motor by the angle -2*STEP_TURN, which is found in 
the legsAngles table at row 0 (LEFT is defined as 0; see the program definitions at the beginning 
of this section) and column 2 (RIGHT is an alias for 2). To be clear, legsAngles is a one-dimensional 
array, indexed as follows: 

legsAngles[column+3*row] 

row and column can be 0, 1, or 2. In the case of this example, the index value is 2+3*0 = 2, 

and shows where to find the needed angle. You can see other example cases in Table 4-2. 
 

Table 4-2. Examples of How the Stepping Decision Table Works 

Old State New State Index Value Corresponding Angle 

LEFT(0) CENTER(1) index = 1+3*0 = 1 (-STEP_TURN) 

CENTER(1) RIGHT(2) index = 2+3*1 = 5 (-STEP_TURN) 

RIGHT(2) LEFT(0) index = 0+3*2 = 6 (2*STEP_TURN) 

CENTER(1) CENTER(1) index = 1+3*1 = 4 (0) , as one would expect 
 
 

■Caution Array indexes are 0-based; for example, the first element of array is array[0], and the last 
element is at an index that equals ArrayLen(array)-1. 
 
 

I  find this solution cleaner and more elegant than using a nested if or a switch statement 
that would result in much messier code. Now you have an idea of how low-level routines (to 
manage AT-ST mechanics) work. This software represents the skeleton for any program you 
would write for your AT-ST, without having to worry about low-level mechanical management. 

 

Building Your Personal AT-ST 

Before you throw yourself into building a robot, you should read the following brief notes. To 
get the best robot appearance, I used some extra parts besides the NXT retail set parts. They 
aren’t hard-to-find elements, and they’re used just to embellish the model. 

Don’t worry; the robot’s functionality is not compromised if you don’t have these elements. 
Figure 4-4 shows the parts needed, and Table 4-3 points out which parts are not included in 
the retail set. Follow the instructions carefully to know which steps to skip and which parts to 
replace.



72 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4-4. NXT AT-ST bill of materials 



CHAPTER 4 ■ NXT AT-ST 73 
 
 

Table 4-3. NXT AT-ST Bill of Materials 

Quantity Color Part Number Part Name 

4 White 32524.DAT TECHNIC  Beam 7 

3 White 40490.DAT TECHNIC  Beam 9 

1 4845x.DAT TECHNIC  Turntable New 

1 Black 55804.DAT Electric Cable NXT 20cm 

4 Black 55805.DAT Electric Cable NXT 35cm 

7 White 32525.DAT TECHNIC  Beam 11 

2 Light gray 50914.DAT TECHNIC  Bionicle Weapon Pincer Suukorak 

4 White 41239.DAT TECHNIC  Beam 13 

11 White 32278.DAT TECHNIC  Beam 15 

2 53787.DAT Electric MINDSTORMS NXT Motor 

1 53788.DAT Electric MINDSTORMS NXT 
 

8 Dark gray 32523.DAT TECHNIC  Beam 3 

4 Black 3706.DAT TECHNIC  Axle 6 

8 Dark gray 32348.DAT TECHNIC  Beam 7 Liftarm Bent 53.5 (4:4) 

2 Dark gray 3894.DAT TECHNIC  Brick 1  6 with Holes 

4 Light gray 44294.DAT TECHNIC  Axle 7 

1 55963.DAT Electric MINDSTORMS NXT Sound Sensor 

1- 53793.DAT Electric MINDSTORMS NXT Touch Sensor 

2 Black 3707.DAT TECHNIC  Axle 8 

2 Dark gray 32271.DAT TECHNIC  Beam 9 Liftarm Bent 53.5 (7:3) 

2 Black 32293.DAT TECHNIC  Steering Link 9L 

1 56467.DAT Electric MINDSTORMS NXT Ultrasonic Sensor 

6 Dark gray 32009.DAT TECHNIC  Beam 11.5 Liftarm Bent 45 Double 
 

2 Light gray 3673.DAT TECHNIC  Pin 

33 Black 6558.DAT TECHNIC  Pin Long with Friction and Slot 

2 Dark gray 42003.DAT TECHNIC  Axle Joiner Perpendicular with 2 Holes 

6 Dark gray 41678.DAT TECHNIC  Axle Joiner Perpendicular Double Split 

1 Black 32136.DAT TECHNIC  Pin 3L Double 

11 Light gray 4519.DAT TECHNIC  Axle 3 

13 Light gray 48989.DAT TECHNIC Axle Joiner Perpendicular 133 with 4 Pins 

2 Black 32054.DAT TECHNIC  Pin Long with Stop Bush 

2 Light gray 3648.DAT TECHNIC  Gear 24 Tooth 

3 Black 32184.DAT TECHNIC  Axle Joiner Perpendicular 3L 

9 Dark gray 32140.DAT TECHNIC  Beam 5 Liftarm Bent 90 (4:2) 

Continued



74 CHAPTER 4 ■ NXT AT-ST 
 
 
Table 4-3. (Continued) 

Quantity    Color          Part Number    Part Name 

1          Dark gray      3701.DAT       TECHNIC  Brick 1  4 with Holes 

2          Black          2905.DAT       TECHNIC  Liftarm Triangle 5  3  0.5 

1          Black          X344.DAT       TECHNIC  Gear 36 Tooth Double Bevel 

4          Light gray     32073.DAT      TECHNIC  Axle 5 

5          Dark gray      32316.DAT      TECHNIC  Beam 5 

1          Dark gray      32526.DAT      TECHNIC  Beam 7 Bent 90 (5:3) 
 

10         Light gray     3713.DAT       TECHNIC  Bush 

4          Black          6628.DAT       TECHNIC  Friction Pin with Towball 

1          Black          32270.DAT      TECHNIC  Gear 12 Tooth Double Bevel 

31         Blue          43093.DAT      TECHNIC  Axle Pin with Friction 

6          Light gray     6536.DAT       TECHNIC  Axle Joiner Perpendicular 

3          Black          32062.DAT      TECHNIC  Axle 2 Notched 

72         Black          2780.DAT       TECHNIC  Pin with Friction and Slots 

1          Light gray     4019.DAT       TECHNIC  Gear 16 Tooth 

2          Black          32192.DAT      TECHNIC  Angle Connector #4 (135 degree) 

2          Dark gray      6538B.DAT      TECHNIC  Axle Joiner Offset 

6          Black          45590.DAT      TECHNIC  Axle Joiner Double Flexible 

2          Black          75535.DAT      TECHNIC  Pin Joiner Round 

5          Dark gray      32291.DAT      TECHNIC  Axle Joiner Perpendicular Double 

1          Black          32557.DAT      TECHNIC  Pin Joiner Dual Perpendicular 

1          Light gray     32269.DAT      TECHNIC  Gear 20 Tooth Double Bevel 

10         Light gray     32556.DAT      TECHNIC  Pin Long 

2          Light gray     4185.DAT       TECHNIC  Wedge Belt Wheel (replaces TECHNIC 
Gear 36 Tooth Double Bevel) 
 

338 parts total (all included in NXT retail set) 
 

PARTS FOR AESTHETIC  ADD-ONS 

2          Light gray     32123.DAT      TECHNIC  Bush 1/2 Smooth 

4          White         32278.DAT      TECHNIC Beam 15 

2          Light gray     54087.DAT      Wheel 43.2  22 Without Pinholes 

2          Black          6558.DAT       TECHNIC  Pin Long with Friction and Slot 

4          Light gray     4519.DAT       TECHNIC  Axle 3 

1          Black          X344.DAT       TECHNIC  Gear 36 Tooth Double Bevel 

2          Black          32039.DAT      TECHNIC  Connector with Axlehole 

8          Light gray     32556.DAT      TECHNIC  Pin Long 



CHAPTER 4 ■ NXT AT-ST 75 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Start building the left hip. 



76 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Skip Step 8 if you do not have two black Gears 36 Tooth Double Bevel. Do this to achieve symmetry. 
In fact, you can’t mount the large decorative wheel in the other leg, because that black gear is 
replaced by two gray belt wheels. 



CHAPTER 4 ■ NXT AT-ST 77 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the decorative parts of the hip. If you don’t have two black gears, don’t attach the large dec- 
orative wheel for the same reason as before. 



78 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Start building the part of the leg common to both sides. 



CHAPTER 4 ■ NXT AT-ST 79 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Step 15, do not insert the marked pins. In the circle you can see the correct holes in which to 
attach the upper 15-long beam. 



80 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
From here on, you build the decorative part of the leg. If you do not have extra parts, skip Step 16. 
In Step 17, add just the 15-long beam. 



CHAPTER 4 ■ NXT AT-ST 81 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Continue skipping these steps if you don’t have the extra parts. 



82 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Continue skipping these steps if you don’t have the extra parts. The leg is done. 



CHAPTER 4 ■ NXT AT-ST 83 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The black spots on the leg must meet the spots on the hip. 



84 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The leg beams must fit in the spaces between the three dark gray bent beams. 



CHAPTER 4 ■ NXT AT-ST 85 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This picture shows how the leg should fit in the hip assembly. Insert the axles to hold the leg in 
place. 



86 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the reinforcer that prevents the ankle from bending to the outside too much during 
stepping. Insert the 7-long axle at the end of the leg. 



CHAPTER 4 ■ NXT AT-ST 87 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Rotate the assembly and build the external foot. 



88 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Insert the foot pad. 



CHAPTER 4 ■ NXT AT-ST 89 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the internal side of the foot with wedges. 



90 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Attach the foot blades. 



CHAPTER 4 ■ NXT AT-ST 91 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The left leg is completed. 



92 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Start building the right hip. 



CHAPTER 4 ■ NXT AT-ST 93 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Step 49, if you don’t have the extra black gear, replace the black gear with two gray wheels, 
checking their position in the figure on page 111. 



94 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Build the decorative parts of the hip. Skip Steps 50 to 54 if you replaced the black gear with two 
gray wheels in Step 49. 



CHAPTER 4 ■ NXT AT-ST 95 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Start building the part of the leg common to both sides. 



96 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Step 61, do not insert the marked pins. In the circle you can see the correct holes where you 
can attach the upper 15-long beam. 



CHAPTER 4 ■ NXT AT-ST 97 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
From now on, you’ll build the decorative part of the leg. If you don’t have the extra parts, skip 
Step 62, and in Step 64, add just the 15-long beam. 



98 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Continue skipping these steps if you don’t have the extra parts. 



CHAPTER 4 ■ NXT AT-ST 99 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Continue skipping these steps if you don’t have the extra parts. The leg is done. 



100 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The black spots on the leg must meet the spots on the hip. 



CHAPTER 4 ■ NXT AT-ST 101 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The leg beams must fit in the two spaces between the three dark gray bent beams. 



102 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This picture shows how the leg should fit in the hip assembly. Insert the axles to hold the leg in 
place. 



CHAPTER 4 ■ NXT AT-ST 103 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the reinforcer, which prevents the ankle from bending too much to the outside during 
stepping. Insert the 7-long axle at the end of the leg. 



104 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Rotate the assembly and build the external foot. 



CHAPTER 4 ■ NXT AT-ST 105 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Insert the foot pad. 



106 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the internal side of the foot with wedges. 



CHAPTER 4 ■ NXT AT-ST 107 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Attach the foot blades. 



108 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The right leg is completed. 



CHAPTER 4 ■ NXT AT-ST 109 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Join the completed legs with an 11-long beam. 



110 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To make the legs move parallel to each other, insert another 11-long beam and the brick assembly. 



CHAPTER 4 ■ NXT AT-ST 111 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This picture shows how the AT-ST looks when assembled with retail set parts only. Notice the 
two gray wheels on the right hip assembly and the black gear on the left hip. 



112 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This picture shows the AT-ST legs without the additional 15-long beams. You can remove those 
beams safely, because they aren’t structural. 



CHAPTER 4 ■ NXT AT-ST 113 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Now build the subassembly for the motors. 



114 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Insert two 8-long axles in the motor shafts. The callout shows where to place the bush and 
the gear. 



CHAPTER 4 ■ NXT AT-ST 115 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Insert the 6-long axles, fixing them with the bushes. Rotate the model and check if you inserted 
the axles correctly. 



116 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Attach the motors’ subassembly on the legs. Insert the 6-long axles in the black gear’s central 
hole (left leg) and in the gray wheel’s central hole (right leg). However, if you have two black 
gears, the model looks as in this picture. 



CHAPTER 4 ■ NXT AT-ST 117 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the rotating neck. 



118 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Rotate the model upside down and finish the neck assembly. 



CHAPTER 4 ■ NXT AT-ST 119 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This graphic shows the motors attached to the legs, and also how to insert the neck in place. 



120 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the beam that will hold the legs firmly. 



CHAPTER 4 ■ NXT AT-ST 121 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Insert the cross-bracing beam that holds the legs. Notice that you can’t detach the legs from the 
AT-ST if this beam is in place. 



122 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Insert the 16-tooth gear and the bush in their places. 



CHAPTER 4 ■ NXT AT-ST 123 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notice that the right motor gear (on top) engages the neck turntable, while the left motor 
12-tooth gear (on bottom) engages the left leg’s black gear. 



124 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The NXT is used as the AT-ST head. 



CHAPTER 4 ■ NXT AT-ST 125 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Attach the head to the neck. Be careful; the NXT is not secured to the neck yet. 



126 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Connect the left motor to NXT output port C using a 35cm (14 inch) cable. 



CHAPTER 4 ■ NXT AT-ST 127 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Connect the right motor to NXT output port A using a 35cm (14 inch) cable. 



128 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This frame will firmly connect the neck to the motors. Also, this time use the cross-bracing 
technique. 



CHAPTER 4 ■ NXT AT-ST 129 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Attaching these side assemblies will secure the NXT to the neck, and so to the rest of the robot. 



130 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the Touch Sensor assembly and attach it under the head. Connect the Touch Sensor to 
NXT input port 3 using a 20cm (8 inch) cable. 



CHAPTER 4 ■ NXT AT-ST 131 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Attach a 35cm (14 inch) cable to NXT input port 4 and pass it under the bent beam on the left 
side of the head. 



132 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the Sound Sensor assembly and attach it to the NXT and to the cable left free in the 
preceding step. 



CHAPTER 4 ■ NXT AT-ST 133 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Turn the model and attach another 35cm (14 inch) cable to NXT input port 1, passing it under 
the bent beam on the right side of the head. 



134 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the Ultrasonic Sensor assembly and attach it to the NXT and to the cable left free in the 
preceding step. 



CHAPTER 4 ■ NXT AT-ST 135 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Start building the face of the robot. 



136 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Build the chin-mounted laser cannons. 



CHAPTER 4 ■ NXT AT-ST 137 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Complete the AT-ST face assembly. 



138 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Attach the face to the rest of the head. 



CHAPTER 4 ■ NXT AT-ST 139 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Place a 7-long beam and a black steering link to hold the head. 



140 CHAPTER 4 ■ NXT AT-ST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 


